brickworks/include/bw_delay.h

959 lines
29 KiB
C++

/*
* Brickworks
*
* Copyright (C) 2023, 2024 Orastron Srl unipersonale
*
* Brickworks is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* Brickworks is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
*
* File author: Stefano D'Angelo
*/
/*!
* module_type {{{ dsp }}}
* version {{{ 1.1.1 }}}
* requires {{{ bw_buf bw_common bw_math }}}
* description {{{
* Interpolated delay line, not smoothed.
*
* You can either use the usual API for updating coefficients and processing
* signals or you can directly write and read from the delay line which,
* for example, allows you to implement smoothing and multi-tap output.
* }}}
* changelog {{{
* <ul>
* <li>Version <strong>1.1.1</strong>:
* <ul>
* <li>Added debugging check in <code>bw_delay_process_multi()</code>
* to ensure that buffers used for both input and output appear at
* the same channel indices.</li>
* </ul>
* </li>
* <li>Version <strong>1.1.0</strong>:
* <ul>
* <li>Now using <code>BW_NULL</code> and
* <code>BW_CXX_NO_ARRAY</code>.</li>
* </ul>
* </li>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Removed <code>read()</code> and <code>write()</code> from C++
* API.</li>
* <li>Added initial value argument in
* <code>bw_delay_reset_state()</code>.</li>
* <li>Added <code>bw_delay_reset_state_multi()</code> and updated C++
* API in this regard.</li>
* <li>Now <code>bw_delay_reset_state()</code> returns the initial
* output value.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li>Now using <code>size_t</code> instead of
* <code>BW_SIZE_T</code>.</li>
* <li><code>bw_delay_process()</code> and
* <code>bw_delay_process_multi()</code> now use
* <code>size_t</code> to count samples and channels.</li>
* <li>Added more <code>const</code> and <code>BW_RESTRICT</code>
* specifiers to input arguments and implementation.</li>
* <li>Moved C++ code to C header.</li>
* <li>Added overloaded C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
* <ul>
* <li>Removed dependency on bw_config.</li>
* </ul>
* </li>
* <li>Version <strong>0.5.0</strong>:
* <ul>
* <li>Added <code>bw_delay_process_multi()</code>.</li>
* <li>Updated mem_req/set API.</li>
* <li>Added C++ wrapper.</li>
* </ul>
* </li>
* <li>Version <strong>0.4.0</strong>:
* <ul>
* <li>First release.</li>
* </ul>
* </li>
* </ul>
* }}}
*/
#ifndef BW_DELAY_H
#define BW_DELAY_H
#include <bw_common.h>
#ifdef __cplusplus
extern "C" {
#endif
/*! api {{{
* #### bw_delay_coeffs
* ```>>> */
typedef struct bw_delay_coeffs bw_delay_coeffs;
/*! <<<```
* Coefficients and related.
*
* #### bw_delay_state
* ```>>> */
typedef struct bw_delay_state bw_delay_state;
/*! <<<```
* Internal state and related.
*
* #### bw_delay_init()
* ```>>> */
static inline void bw_delay_init(
bw_delay_coeffs * BW_RESTRICT coeffs,
float max_delay);
/*! <<<```
* Initializes input parameter values in `coeffs` using `max_delay` (s) as
* the maximum delay time.
*
* `max_delay` must be finite and non-negative.
*
* #### bw_delay_set_sample_rate()
* ```>>> */
static inline void bw_delay_set_sample_rate(
bw_delay_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_delay_mem_req()
* ```>>> */
static inline size_t bw_delay_mem_req(
const bw_delay_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Returns the size, in bytes, of contiguous memory to be supplied to
* `bw_delay_mem_set()` using `coeffs`.
*
* #### bw_delay_mem_set()
* ```>>> */
static inline void bw_delay_mem_set(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
void * BW_RESTRICT mem);
/*! <<<```
* Associates the contiguous memory block `mem` to the given `state` using
* `coeffs`.
*
* #### bw_delay_reset_coeffs()
* ```>>> */
static inline void bw_delay_reset_coeffs(
bw_delay_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_delay_reset_state()
* ```>>> */
static inline float bw_delay_reset_state(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
float x_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the initial input value `x_0`.
*
* Returns the corresponding initial output value.
*
* #### bw_delay_reset_state_multi()
* ```>>> */
static inline void bw_delay_reset_state_multi(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding initial input value in the `x_0`
* array.
*
* The corresponding initial output values are written into the `y_0` array,
* if not `BW_NULL`.
*
* #### bw_delay_read()
* ```>>> */
static float bw_delay_read(
const bw_delay_coeffs * BW_RESTRICT coeffs,
const bw_delay_state * BW_RESTRICT state,
size_t di,
float df);
/*! <<<```
* Returns the interpolated value read from the delay line identified by
* `coeffs` and `state` by applying a delay of `di` + `df` samples.
*
* `df` must be in [`0.f`, `1.f`) and `di` + `df` must not exceed the delay
* line length (`max_delay * sample_rate`).
*
* #### bw_delay_write()
* ```>>> */
static void bw_delay_write(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
float x);
/*! <<<```
* Pushes the new sample `x` on the delay line identified by `coeffs` and
* `state`.
*
* #### bw_delay_update_coeffs_ctrl()
* ```>>> */
static inline void bw_delay_update_coeffs_ctrl(
bw_delay_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_delay_update_coeffs_audio()
* ```>>> */
static inline void bw_delay_update_coeffs_audio(
bw_delay_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_delay_process1()
* ```>>> */
static inline float bw_delay_process1(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
float x);
/*! <<<```
* Processes one input sample `x` using `coeffs`, while using and updating
* `state`. Returns the corresponding output sample.
*
* #### bw_delay_process()
* ```>>> */
static inline void bw_delay_process(
bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffer `y`, while using and updating both
* `coeffs` and `state` (control and audio rate).
*
* #### bw_delay_process_multi()
* ```>>> */
static inline void bw_delay_process_multi(
bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
* using and updating both the common `coeffs` and each of the `n_channels`
* `state`s (control and audio rate).
*
* #### bw_delay_set_delay()
* ```>>> */
static inline void bw_delay_set_delay(
bw_delay_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the delay time `value` (s) in `coeffs`.
*
* Valid range: [`0.f`, `max_delay`].
*
* Default value: `0.f`.
*
* #### bw_delay_get_length()
* ```>>> */
static inline size_t bw_delay_get_length(
const bw_delay_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Returns the length of the delay line in samples as stored in `coeffs`.
*
* `coeffs` must be at least in the "sample-rate-set" state.
*
* #### bw_delay_coeffs_is_valid()
* ```>>> */
static inline char bw_delay_coeffs_is_valid(
const bw_delay_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_delay_coeffs`.
*
* #### bw_delay_state_is_valid()
* ```>>> */
static inline char bw_delay_state_is_valid(
const bw_delay_coeffs * BW_RESTRICT coeffs,
const bw_delay_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `BW_NULL` extra cross-checks might be performed
* (`state` is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_delay_state`.
* }}} */
#ifdef __cplusplus
}
#endif
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
#include <bw_buf.h>
#include <bw_math.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_delay_coeffs_state {
bw_delay_coeffs_state_invalid,
bw_delay_coeffs_state_init,
bw_delay_coeffs_state_set_sample_rate,
bw_delay_coeffs_state_reset_coeffs
};
#endif
#ifdef BW_DEBUG_DEEP
enum bw_delay_state_state {
bw_delay_state_state_invalid,
bw_delay_state_state_mem_set,
bw_delay_state_state_reset_state
};
#endif
struct bw_delay_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_delay_coeffs_state state;
uint32_t reset_id;
#endif
// Coefficients
float fs;
size_t len;
size_t di;
float df;
// Parameters
float max_delay;
float delay;
char delay_changed;
};
struct bw_delay_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_delay_state_state state;
uint32_t coeffs_reset_id;
#endif
// States
float * BW_RESTRICT buf;
size_t idx;
};
static inline void bw_delay_init(
bw_delay_coeffs * BW_RESTRICT coeffs,
float max_delay) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT(bw_is_finite(max_delay));
BW_ASSERT(max_delay >= 0.f);
coeffs->max_delay = max_delay;
coeffs->delay = 0.f;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_delay_coeffs");
coeffs->state = bw_delay_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_delay_coeffs_state_init);
}
static inline void bw_delay_set_sample_rate(
bw_delay_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
coeffs->fs = sample_rate;
coeffs->len = (size_t)bw_ceilf(coeffs->fs * coeffs->max_delay) + 1;
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_delay_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_delay_coeffs_state_set_sample_rate);
}
static inline size_t bw_delay_mem_req(
const bw_delay_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate);
return coeffs->len * sizeof(float);
}
static inline void bw_delay_mem_set(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
void * BW_RESTRICT mem) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate);
BW_ASSERT(state != BW_NULL);
BW_ASSERT(mem != BW_NULL);
(void)coeffs;
state->buf = (float *)mem;
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_delay_state");
state->state = bw_delay_state_state_mem_set;
#endif
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state == bw_delay_state_state_mem_set);
}
static inline void bw_delay_do_update_coeffs_ctrl(bw_delay_coeffs *BW_RESTRICT coeffs) {
if (coeffs->delay_changed) {
float i;
bw_intfracf(coeffs->fs * coeffs->delay, &i, &coeffs->df);
coeffs->di = (size_t)i;
coeffs->delay_changed = 0;
}
}
static inline void bw_delay_reset_coeffs(
bw_delay_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate);
coeffs->delay_changed = 1;
bw_delay_do_update_coeffs_ctrl(coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_delay_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_delay_coeffs_state_reset_coeffs);
}
static inline float bw_delay_reset_state(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
float x_0) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_mem_set);
BW_ASSERT(bw_is_finite(x_0));
bw_buf_fill(x_0, state->buf, coeffs->len);
state->idx = 0;
const float y = x_0;
#ifdef BW_DEBUG_DEEP
state->state = bw_delay_state_state_reset_state;
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_delay_reset_state_multi(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x_0 != BW_NULL);
if (y_0 != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
y_0[i] = bw_delay_reset_state(coeffs, state[i], x_0[i]);
else
for (size_t i = 0; i < n_channels; i++)
bw_delay_reset_state(coeffs, state[i], x_0[i]);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1);
}
static float bw_delay_read(
const bw_delay_coeffs * BW_RESTRICT coeffs,
const bw_delay_state * BW_RESTRICT state,
size_t di,
float df) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
BW_ASSERT(bw_is_finite(df));
BW_ASSERT(df >= 0.f && df < 1.f);
BW_ASSERT(di + df <= coeffs->len);
const size_t n = (state->idx + (state->idx >= di ? 0 : coeffs->len)) - di;
const size_t p = (n ? n : coeffs->len) - 1;
const float y = state->buf[n] + df * (state->buf[p] - state->buf[n]);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
BW_ASSERT(bw_is_finite(y));
return y;
}
static void bw_delay_write(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
BW_ASSERT(bw_is_finite(x));
state->idx++;
state->idx = state->idx == coeffs->len ? 0 : state->idx;
state->buf[state->idx] = x;
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
}
static inline void bw_delay_update_coeffs_ctrl(
bw_delay_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
bw_delay_do_update_coeffs_ctrl(coeffs);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
}
static inline void bw_delay_update_coeffs_audio(
bw_delay_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
(void)coeffs;
}
static inline float bw_delay_process1(
const bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
BW_ASSERT(bw_is_finite(x));
bw_delay_write(coeffs, state, x);
const float y = bw_delay_read(coeffs, state, coeffs->di, coeffs->df);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_delay_process(
bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
BW_ASSERT(x != BW_NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
BW_ASSERT(y != BW_NULL);
bw_delay_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_delay_process1(coeffs, state, x[i]);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state);
BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples));
}
static inline void bw_delay_process_multi(
bw_delay_coeffs * BW_RESTRICT coeffs,
bw_delay_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x != BW_NULL);
BW_ASSERT(y != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(y[i] != y[j]);
for (size_t i = 0; i < n_channels; i++)
for (size_t j = 0; j < n_channels; j++)
BW_ASSERT(i == j || x[i] != y[j]);
#endif
bw_delay_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++)
for (size_t j = 0; j < n_channels; j++)
y[j][i] = bw_delay_process1(coeffs, state[j], x[j][i]);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs);
}
static inline void bw_delay_set_delay(
bw_delay_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
if (value != coeffs->delay) {
coeffs->delay = value;
coeffs->delay_changed = 1;
}
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_init);
}
static inline size_t bw_delay_get_length(
const bw_delay_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate);
return coeffs->len;
}
static inline char bw_delay_coeffs_is_valid(
const bw_delay_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_delay_coeffs"))
return 0;
if (coeffs->state < bw_delay_coeffs_state_init || coeffs->state > bw_delay_coeffs_state_reset_coeffs)
return 0;
#endif
if (!bw_is_finite(coeffs->max_delay) || coeffs->max_delay <= 0.f)
return 0;
if (!bw_is_finite(coeffs->delay) || coeffs->delay < 0.f || coeffs->delay > coeffs->max_delay)
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_delay_coeffs_state_set_sample_rate) {
if (!bw_is_finite(coeffs->fs) || coeffs->fs <= 0.f)
return 0;
if (coeffs->len == 0)
return 0;
}
if (coeffs->state >= bw_delay_coeffs_state_reset_coeffs) {
if (!bw_is_finite(coeffs->df) || coeffs->df < 0.f || coeffs->df >= 1.f)
return 0;
if (coeffs->di + coeffs->df > coeffs->len)
return 0;
}
#endif
return 1;
}
static inline char bw_delay_state_is_valid(
const bw_delay_coeffs * BW_RESTRICT coeffs,
const bw_delay_state * BW_RESTRICT state) {
BW_ASSERT(state != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_delay_state"))
return 0;
if (state->state < bw_delay_state_state_mem_set || state->state > bw_delay_state_state_reset_state)
return 0;
#endif
(void)coeffs;
if (state->buf == BW_NULL)
return 0;
#ifdef BW_DEBUG_DEEP
if (state->state >= bw_delay_state_state_reset_state && coeffs != BW_NULL) {
if (coeffs->reset_id != state->coeffs_reset_id)
return 0;
if (state->idx >= coeffs->len)
return 0;
}
#endif
return 1;
}
#ifdef __cplusplus
}
#ifndef BW_CXX_NO_ARRAY
# include <array>
#endif
namespace Brickworks {
/*** Public C++ API ***/
/*! api_cpp {{{
* ##### Brickworks::Delay
* ```>>> */
template<size_t N_CHANNELS>
class Delay {
public:
Delay(
float maxDelay = 1.f);
~Delay();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
#endif
void reset(
const float * x0,
float * y0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
#endif
void process(
const float * const * x,
float * const * y,
size_t nSamples);
#ifndef BW_CXX_NO_ARRAY
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
#endif
void setDelay(
float value);
size_t getLength();
/*! <<<...
* }
* ```
* }}} */
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
private:
bw_delay_coeffs coeffs;
bw_delay_state states[N_CHANNELS];
bw_delay_state * BW_RESTRICT statesP[N_CHANNELS];
void * BW_RESTRICT mem;
};
template<size_t N_CHANNELS>
inline Delay<N_CHANNELS>::Delay(float maxDelay) {
bw_delay_init(&coeffs, maxDelay);
for (size_t i = 0; i < N_CHANNELS; i++)
statesP[i] = states + i;
mem = nullptr;
}
template<size_t N_CHANNELS>
inline Delay<N_CHANNELS>::~Delay() {
if (mem != nullptr)
operator delete(mem);
}
template<size_t N_CHANNELS>
inline void Delay<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_delay_set_sample_rate(&coeffs, sampleRate);
size_t req = bw_delay_mem_req(&coeffs);
if (mem != nullptr)
operator delete(mem);
mem = operator new(req * N_CHANNELS);
void *m = mem;
for (size_t i = 0; i < N_CHANNELS; i++, m = static_cast<char *>(m) + req)
bw_delay_mem_set(&coeffs, states + i, m);
}
template<size_t N_CHANNELS>
inline void Delay<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT y0) {
bw_delay_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
y0[i] = bw_delay_reset_state(&coeffs, states + i, x0);
else
for (size_t i = 0; i < N_CHANNELS; i++)
bw_delay_reset_state(&coeffs, states + i, x0);
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void Delay<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
#endif
template<size_t N_CHANNELS>
inline void Delay<N_CHANNELS>::reset(
const float * x0,
float * y0) {
bw_delay_reset_coeffs(&coeffs);
bw_delay_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS);
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void Delay<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
#endif
template<size_t N_CHANNELS>
inline void Delay<N_CHANNELS>::process(
const float * const * x,
float * const * y,
size_t nSamples) {
bw_delay_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples);
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void Delay<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
process(x.data(), y.data(), nSamples);
}
#endif
template<size_t N_CHANNELS>
inline void Delay<N_CHANNELS>::setDelay(
float value) {
bw_delay_set_delay(&coeffs, value);
}
template<size_t N_CHANNELS>
inline size_t Delay<N_CHANNELS>::getLength() {
return bw_delay_get_length(&coeffs);
}
}
#endif
#endif