/* * Brickworks * * Copyright (C) 2023, 2024 Orastron Srl unipersonale * * Brickworks is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3 of the License. * * Brickworks is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Brickworks. If not, see . * * File author: Stefano D'Angelo */ /*! * module_type {{{ dsp }}} * version {{{ 1.1.1 }}} * requires {{{ bw_buf bw_common bw_math }}} * description {{{ * Interpolated delay line, not smoothed. * * You can either use the usual API for updating coefficients and processing * signals or you can directly write and read from the delay line which, * for example, allows you to implement smoothing and multi-tap output. * }}} * changelog {{{ * * }}} */ #ifndef BW_DELAY_H #define BW_DELAY_H #include #ifdef __cplusplus extern "C" { #endif /*! api {{{ * #### bw_delay_coeffs * ```>>> */ typedef struct bw_delay_coeffs bw_delay_coeffs; /*! <<<``` * Coefficients and related. * * #### bw_delay_state * ```>>> */ typedef struct bw_delay_state bw_delay_state; /*! <<<``` * Internal state and related. * * #### bw_delay_init() * ```>>> */ static inline void bw_delay_init( bw_delay_coeffs * BW_RESTRICT coeffs, float max_delay); /*! <<<``` * Initializes input parameter values in `coeffs` using `max_delay` (s) as * the maximum delay time. * * `max_delay` must be finite and non-negative. * * #### bw_delay_set_sample_rate() * ```>>> */ static inline void bw_delay_set_sample_rate( bw_delay_coeffs * BW_RESTRICT coeffs, float sample_rate); /*! <<<``` * Sets the `sample_rate` (Hz) value in `coeffs`. * * #### bw_delay_mem_req() * ```>>> */ static inline size_t bw_delay_mem_req( const bw_delay_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Returns the size, in bytes, of contiguous memory to be supplied to * `bw_delay_mem_set()` using `coeffs`. * * #### bw_delay_mem_set() * ```>>> */ static inline void bw_delay_mem_set( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, void * BW_RESTRICT mem); /*! <<<``` * Associates the contiguous memory block `mem` to the given `state` using * `coeffs`. * * #### bw_delay_reset_coeffs() * ```>>> */ static inline void bw_delay_reset_coeffs( bw_delay_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Resets coefficients in `coeffs` to assume their target values. * * #### bw_delay_reset_state() * ```>>> */ static inline float bw_delay_reset_state( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, float x_0); /*! <<<``` * Resets the given `state` to its initial values using the given `coeffs` * and the initial input value `x_0`. * * Returns the corresponding initial output value. * * #### bw_delay_reset_state_multi() * ```>>> */ static inline void bw_delay_reset_state_multi( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels); /*! <<<``` * Resets each of the `n_channels` `state`s to its initial values using the * given `coeffs` and the corresponding initial input value in the `x_0` * array. * * The corresponding initial output values are written into the `y_0` array, * if not `BW_NULL`. * * #### bw_delay_read() * ```>>> */ static float bw_delay_read( const bw_delay_coeffs * BW_RESTRICT coeffs, const bw_delay_state * BW_RESTRICT state, size_t di, float df); /*! <<<``` * Returns the interpolated value read from the delay line identified by * `coeffs` and `state` by applying a delay of `di` + `df` samples. * * `df` must be in [`0.f`, `1.f`) and `di` + `df` must not exceed the delay * line length (`max_delay * sample_rate`). * * #### bw_delay_write() * ```>>> */ static void bw_delay_write( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, float x); /*! <<<``` * Pushes the new sample `x` on the delay line identified by `coeffs` and * `state`. * * #### bw_delay_update_coeffs_ctrl() * ```>>> */ static inline void bw_delay_update_coeffs_ctrl( bw_delay_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers control-rate update of coefficients in `coeffs`. * * #### bw_delay_update_coeffs_audio() * ```>>> */ static inline void bw_delay_update_coeffs_audio( bw_delay_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers audio-rate update of coefficients in `coeffs`. * * #### bw_delay_process1() * ```>>> */ static inline float bw_delay_process1( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, float x); /*! <<<``` * Processes one input sample `x` using `coeffs`, while using and updating * `state`. Returns the corresponding output sample. * * #### bw_delay_process() * ```>>> */ static inline void bw_delay_process( bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the input buffer `x` and fills the * first `n_samples` of the output buffer `y`, while using and updating both * `coeffs` and `state` (control and audio rate). * * #### bw_delay_process_multi() * ```>>> */ static inline void bw_delay_process_multi( bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the `n_channels` input buffers `x` and * fills the first `n_samples` of the `n_channels` output buffers `y`, while * using and updating both the common `coeffs` and each of the `n_channels` * `state`s (control and audio rate). * * #### bw_delay_set_delay() * ```>>> */ static inline void bw_delay_set_delay( bw_delay_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the delay time `value` (s) in `coeffs`. * * Valid range: [`0.f`, `max_delay`]. * * Default value: `0.f`. * * #### bw_delay_get_length() * ```>>> */ static inline size_t bw_delay_get_length( const bw_delay_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Returns the length of the delay line in samples as stored in `coeffs`. * * `coeffs` must be at least in the "sample-rate-set" state. * * #### bw_delay_coeffs_is_valid() * ```>>> */ static inline char bw_delay_coeffs_is_valid( const bw_delay_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Tries to determine whether `coeffs` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * `coeffs` must at least point to a readable memory block of size greater * than or equal to that of `bw_delay_coeffs`. * * #### bw_delay_state_is_valid() * ```>>> */ static inline char bw_delay_state_is_valid( const bw_delay_coeffs * BW_RESTRICT coeffs, const bw_delay_state * BW_RESTRICT state); /*! <<<``` * Tries to determine whether `state` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * If `coeffs` is not `BW_NULL` extra cross-checks might be performed * (`state` is supposed to be associated to `coeffs`). * * `state` must at least point to a readable memory block of size greater * than or equal to that of `bw_delay_state`. * }}} */ #ifdef __cplusplus } #endif /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ #include #include #ifdef __cplusplus extern "C" { #endif #ifdef BW_DEBUG_DEEP enum bw_delay_coeffs_state { bw_delay_coeffs_state_invalid, bw_delay_coeffs_state_init, bw_delay_coeffs_state_set_sample_rate, bw_delay_coeffs_state_reset_coeffs }; #endif #ifdef BW_DEBUG_DEEP enum bw_delay_state_state { bw_delay_state_state_invalid, bw_delay_state_state_mem_set, bw_delay_state_state_reset_state }; #endif struct bw_delay_coeffs { #ifdef BW_DEBUG_DEEP uint32_t hash; enum bw_delay_coeffs_state state; uint32_t reset_id; #endif // Coefficients float fs; size_t len; size_t di; float df; // Parameters float max_delay; float delay; char delay_changed; }; struct bw_delay_state { #ifdef BW_DEBUG_DEEP uint32_t hash; enum bw_delay_state_state state; uint32_t coeffs_reset_id; #endif // States float * BW_RESTRICT buf; size_t idx; }; static inline void bw_delay_init( bw_delay_coeffs * BW_RESTRICT coeffs, float max_delay) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT(bw_is_finite(max_delay)); BW_ASSERT(max_delay >= 0.f); coeffs->max_delay = max_delay; coeffs->delay = 0.f; #ifdef BW_DEBUG_DEEP coeffs->hash = bw_hash_sdbm("bw_delay_coeffs"); coeffs->state = bw_delay_coeffs_state_init; coeffs->reset_id = coeffs->hash + 1; #endif BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_delay_coeffs_state_init); } static inline void bw_delay_set_sample_rate( bw_delay_coeffs * BW_RESTRICT coeffs, float sample_rate) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_init); BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f); coeffs->fs = sample_rate; coeffs->len = (size_t)bw_ceilf(coeffs->fs * coeffs->max_delay) + 1; #ifdef BW_DEBUG_DEEP coeffs->state = bw_delay_coeffs_state_set_sample_rate; #endif BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_delay_coeffs_state_set_sample_rate); } static inline size_t bw_delay_mem_req( const bw_delay_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate); return coeffs->len * sizeof(float); } static inline void bw_delay_mem_set( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, void * BW_RESTRICT mem) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate); BW_ASSERT(state != BW_NULL); BW_ASSERT(mem != BW_NULL); (void)coeffs; state->buf = (float *)mem; #ifdef BW_DEBUG_DEEP state->hash = bw_hash_sdbm("bw_delay_state"); state->state = bw_delay_state_state_mem_set; #endif BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state == bw_delay_state_state_mem_set); } static inline void bw_delay_do_update_coeffs_ctrl(bw_delay_coeffs *BW_RESTRICT coeffs) { if (coeffs->delay_changed) { float i; bw_intfracf(coeffs->fs * coeffs->delay, &i, &coeffs->df); coeffs->di = (size_t)i; coeffs->delay_changed = 0; } } static inline void bw_delay_reset_coeffs( bw_delay_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate); coeffs->delay_changed = 1; bw_delay_do_update_coeffs_ctrl(coeffs); #ifdef BW_DEBUG_DEEP coeffs->state = bw_delay_coeffs_state_reset_coeffs; coeffs->reset_id++; #endif BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_delay_coeffs_state_reset_coeffs); } static inline float bw_delay_reset_state( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, float x_0) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_mem_set); BW_ASSERT(bw_is_finite(x_0)); bw_buf_fill(x_0, state->buf, coeffs->len); state->idx = 0; const float y = x_0; #ifdef BW_DEBUG_DEEP state->state = bw_delay_state_state_reset_state; state->coeffs_reset_id = coeffs->reset_id; #endif BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_delay_reset_state_multi( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x_0 != BW_NULL); if (y_0 != BW_NULL) for (size_t i = 0; i < n_channels; i++) y_0[i] = bw_delay_reset_state(coeffs, state[i], x_0[i]); else for (size_t i = 0; i < n_channels; i++) bw_delay_reset_state(coeffs, state[i], x_0[i]); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1); } static float bw_delay_read( const bw_delay_coeffs * BW_RESTRICT coeffs, const bw_delay_state * BW_RESTRICT state, size_t di, float df) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); BW_ASSERT(bw_is_finite(df)); BW_ASSERT(df >= 0.f && df < 1.f); BW_ASSERT(di + df <= coeffs->len); const size_t n = (state->idx + (state->idx >= di ? 0 : coeffs->len)) - di; const size_t p = (n ? n : coeffs->len) - 1; const float y = state->buf[n] + df * (state->buf[p] - state->buf[n]); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); BW_ASSERT(bw_is_finite(y)); return y; } static void bw_delay_write( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); BW_ASSERT(bw_is_finite(x)); state->idx++; state->idx = state->idx == coeffs->len ? 0 : state->idx; state->buf[state->idx] = x; BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); } static inline void bw_delay_update_coeffs_ctrl( bw_delay_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); bw_delay_do_update_coeffs_ctrl(coeffs); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); } static inline void bw_delay_update_coeffs_audio( bw_delay_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); (void)coeffs; } static inline float bw_delay_process1( const bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); BW_ASSERT(bw_is_finite(x)); bw_delay_write(coeffs, state, x); const float y = bw_delay_read(coeffs, state, coeffs->di, coeffs->df); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_delay_process( bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); BW_ASSERT(x != BW_NULL); BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples)); BW_ASSERT(y != BW_NULL); bw_delay_update_coeffs_ctrl(coeffs); for (size_t i = 0; i < n_samples; i++) y[i] = bw_delay_process1(coeffs, state, x[i]); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_delay_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(state->state >= bw_delay_state_state_reset_state); BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples)); } static inline void bw_delay_process_multi( bw_delay_coeffs * BW_RESTRICT coeffs, bw_delay_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x != BW_NULL); BW_ASSERT(y != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(y[i] != y[j]); for (size_t i = 0; i < n_channels; i++) for (size_t j = 0; j < n_channels; j++) BW_ASSERT(i == j || x[i] != y[j]); #endif bw_delay_update_coeffs_ctrl(coeffs); for (size_t i = 0; i < n_samples; i++) for (size_t j = 0; j < n_channels; j++) y[j][i] = bw_delay_process1(coeffs, state[j], x[j][i]); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_reset_coeffs); } static inline void bw_delay_set_delay( bw_delay_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); if (value != coeffs->delay) { coeffs->delay = value; coeffs->delay_changed = 1; } BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_init); } static inline size_t bw_delay_get_length( const bw_delay_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_delay_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_delay_coeffs_state_set_sample_rate); return coeffs->len; } static inline char bw_delay_coeffs_is_valid( const bw_delay_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); #ifdef BW_DEBUG_DEEP if (coeffs->hash != bw_hash_sdbm("bw_delay_coeffs")) return 0; if (coeffs->state < bw_delay_coeffs_state_init || coeffs->state > bw_delay_coeffs_state_reset_coeffs) return 0; #endif if (!bw_is_finite(coeffs->max_delay) || coeffs->max_delay <= 0.f) return 0; if (!bw_is_finite(coeffs->delay) || coeffs->delay < 0.f || coeffs->delay > coeffs->max_delay) return 0; #ifdef BW_DEBUG_DEEP if (coeffs->state >= bw_delay_coeffs_state_set_sample_rate) { if (!bw_is_finite(coeffs->fs) || coeffs->fs <= 0.f) return 0; if (coeffs->len == 0) return 0; } if (coeffs->state >= bw_delay_coeffs_state_reset_coeffs) { if (!bw_is_finite(coeffs->df) || coeffs->df < 0.f || coeffs->df >= 1.f) return 0; if (coeffs->di + coeffs->df > coeffs->len) return 0; } #endif return 1; } static inline char bw_delay_state_is_valid( const bw_delay_coeffs * BW_RESTRICT coeffs, const bw_delay_state * BW_RESTRICT state) { BW_ASSERT(state != BW_NULL); #ifdef BW_DEBUG_DEEP if (state->hash != bw_hash_sdbm("bw_delay_state")) return 0; if (state->state < bw_delay_state_state_mem_set || state->state > bw_delay_state_state_reset_state) return 0; #endif (void)coeffs; if (state->buf == BW_NULL) return 0; #ifdef BW_DEBUG_DEEP if (state->state >= bw_delay_state_state_reset_state && coeffs != BW_NULL) { if (coeffs->reset_id != state->coeffs_reset_id) return 0; if (state->idx >= coeffs->len) return 0; } #endif return 1; } #ifdef __cplusplus } #ifndef BW_CXX_NO_ARRAY # include #endif namespace Brickworks { /*** Public C++ API ***/ /*! api_cpp {{{ * ##### Brickworks::Delay * ```>>> */ template class Delay { public: Delay( float maxDelay = 1.f); ~Delay(); void setSampleRate( float sampleRate); void reset( float x0 = 0.f, float * BW_RESTRICT y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( float x0, std::array * BW_RESTRICT y0); #endif void reset( const float * x0, float * y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( std::array x0, std::array * BW_RESTRICT y0 = nullptr); #endif void process( const float * const * x, float * const * y, size_t nSamples); #ifndef BW_CXX_NO_ARRAY void process( std::array x, std::array y, size_t nSamples); #endif void setDelay( float value); size_t getLength(); /*! <<<... * } * ``` * }}} */ /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ private: bw_delay_coeffs coeffs; bw_delay_state states[N_CHANNELS]; bw_delay_state * BW_RESTRICT statesP[N_CHANNELS]; void * BW_RESTRICT mem; }; template inline Delay::Delay(float maxDelay) { bw_delay_init(&coeffs, maxDelay); for (size_t i = 0; i < N_CHANNELS; i++) statesP[i] = states + i; mem = nullptr; } template inline Delay::~Delay() { if (mem != nullptr) operator delete(mem); } template inline void Delay::setSampleRate( float sampleRate) { bw_delay_set_sample_rate(&coeffs, sampleRate); size_t req = bw_delay_mem_req(&coeffs); if (mem != nullptr) operator delete(mem); mem = operator new(req * N_CHANNELS); void *m = mem; for (size_t i = 0; i < N_CHANNELS; i++, m = static_cast(m) + req) bw_delay_mem_set(&coeffs, states + i, m); } template inline void Delay::reset( float x0, float * BW_RESTRICT y0) { bw_delay_reset_coeffs(&coeffs); if (y0 != nullptr) for (size_t i = 0; i < N_CHANNELS; i++) y0[i] = bw_delay_reset_state(&coeffs, states + i, x0); else for (size_t i = 0; i < N_CHANNELS; i++) bw_delay_reset_state(&coeffs, states + i, x0); } #ifndef BW_CXX_NO_ARRAY template inline void Delay::reset( float x0, std::array * BW_RESTRICT y0) { reset(x0, y0 != nullptr ? y0->data() : nullptr); } #endif template inline void Delay::reset( const float * x0, float * y0) { bw_delay_reset_coeffs(&coeffs); bw_delay_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS); } #ifndef BW_CXX_NO_ARRAY template inline void Delay::reset( std::array x0, std::array * BW_RESTRICT y0) { reset(x0.data(), y0 != nullptr ? y0->data() : nullptr); } #endif template inline void Delay::process( const float * const * x, float * const * y, size_t nSamples) { bw_delay_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples); } #ifndef BW_CXX_NO_ARRAY template inline void Delay::process( std::array x, std::array y, size_t nSamples) { process(x.data(), y.data(), nSamples); } #endif template inline void Delay::setDelay( float value) { bw_delay_set_delay(&coeffs, value); } template inline size_t Delay::getLength() { return bw_delay_get_length(&coeffs); } } #endif #endif