brickworks/include/bw_phase_gen.h

1027 lines
33 KiB
C++

/*
* Brickworks
*
* Copyright (C) 2022, 2023 Orastron Srl unipersonale
*
* Brickworks is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* Brickworks is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
*
* File author: Stefano D'Angelo
*/
/*!
* module_type {{{ dsp }}}
* version {{{ 1.0.0 }}}
* requires {{{ bw_common bw_math bw_one_pole }}}
* description {{{
* Phase generator with portamento and exponential frequency modulation.
*
* It outputs a normalized phase signal (range [`0.f`, `1.f`]).
* }}}
* changelog {{{
* <ul>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Added initial input value to
* <code>bw_phase_gen_reset_state()</code>.</li>
* <li>Added <code>bw_phase_gen_reset_state_multi()</code> and updated
* C++ API in this regard.</li>
* <li>Now <code>bw_phase_gen_reset_state()</code> returns the initial
* output value.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li><code>bw_phase_gen_process()</code> and
* <code>bw_phase_gen_process_multi()</code> now use
* <code>size_t</code> to count samples and channels.</li>
* <li>Added more <code>const</code> and <code>BW_RESTRICT</code>
* specifiers to input arguments and implementation.</li>
* <li>Moved C++ code to C header.</li>
* <li>Added overloaded C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Fixed smoothing coefficients update in
* <code>bw_phase_gen_reset_coeffs()</code>.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
* <ul>
* <li>Removed dependency on bw_config.</li>
* </ul>
* </li>
* <li>Version <strong>0.5.0</strong>:
* <ul>
* <li>Added <code>bw_phase_gen_process_multi()</code>.</li>
* <li>Added C++ wrapper.</li>
* </ul>
* </li>
* <li>Version <strong>0.4.0</strong>:
* <ul>
* <li>Fixed unused parameter warnings.</li>
* </ul>
* </li>
* <li>Version <strong>0.3.0</strong>:
* <ul>
* <li>Added <code>BW_RESTRICT</code> to
* <code>bw_phase_gen_process1*()</code>.</li>
* </ul>
* </li>
* <li>Version <strong>0.2.0</strong>:
* <ul>
* <li>Refactored API.</li>
* </ul>
* </li>
* <li>Version <strong>0.1.0</strong>:
* <ul>
* <li>First release.</li>
* </ul>
* </li>
* </ul>
* }}}
*/
#ifndef BW_PHASE_GEN_H
#define BW_PHASE_GEN_H
#include <bw_common.h>
#ifdef __cplusplus
extern "C" {
#endif
/*! api {{{
* #### bw_phase_gen_coeffs
* ```>>> */
typedef struct bw_phase_gen_coeffs bw_phase_gen_coeffs;
/*! <<<```
* Coefficients and related.
*
* #### bw_phase_gen_state
* ```>>> */
typedef struct bw_phase_gen_state bw_phase_gen_state;
/*! <<<```
* Internal state and related.
*
* #### bw_phase_gen_init()
* ```>>> */
static inline void bw_phase_gen_init(
bw_phase_gen_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_phase_gen_set_sample_rate()
* ```>>> */
static inline void bw_phase_gen_set_sample_rate(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_phase_gen_reset_coeffs()
* ```>>> */
static inline void bw_phase_gen_reset_coeffs(
bw_phase_gen_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_phase_gen_reset_state()
* ```>>> */
static inline void bw_phase_gen_reset_state(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT state,
float phase_0,
float * BW_RESTRICT y_0,
float * BW_RESTRICT y_inc_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the initial phase value `phase_0`.
*
* The corresponding initial output and phase increment values are put into
* `y_0` and `y_inc_0` respectively.
*
* #### bw_phase_gen_reset_state_multi()
* ```>>> */
static inline void bw_phase_gen_reset_state_multi(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT const * BW_RESTRICT state,
const float * phase_0,
float * y_0,
float * y_inc_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding initial phase value in the `phase_0`
* array.
*
* The corresponding initial output and phase increment values are put into
* the `y_0` and `y_inc_0` arrays, respectively, if they are not `NULL`.
*
* #### bw_phase_gen_update_coeffs_ctrl()
* ```>>> */
static inline void bw_phase_gen_update_coeffs_ctrl(
bw_phase_gen_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_phase_gen_update_coeffs_audio()
* ```>>> */
static inline void bw_phase_gen_update_coeffs_audio(
bw_phase_gen_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_phase_gen_process1\*()
* ```>>> */
static inline void bw_phase_gen_process1(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT state,
float * BW_RESTRICT y,
float * BW_RESTRICT y_inc);
static inline void bw_phase_gen_process1_mod(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT state,
float x_mod,
float * BW_RESTRICT y,
float * BW_RESTRICT y_inc);
/*! <<<```
* These functions generate one output sample using `coeffs`, while using
* and updating `state`, putting its value in `y` and the corresponding phase
* increment value in `y_inc`.
*
* In particular:
* * `bw_phase_gen_process1()` does not apply frequency modulation;
* * `bw_phase_gen_process1_mod()` applies exponential frequency modulation
* using `x_mod` as modulation input (scale `1.f`/octave).
*
* #### bw_phase_gen_process()
* ```>>> */
static inline void bw_phase_gen_process(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT state,
const float * x_mod,
float * y,
float * y_inc,
size_t n_samples);
/*! <<<```
* Generates and fills the first `n_samples` of the output buffer `y`, while
* using and updating both `coeffs` and `state` (control and audio rate).
*
* If `x_mod` is not `NULL`, it is used as a source of exponential frequency
* modulation (scale `1.f`/octave).
*
* If `y_inc` is not `NULL`, it is filled with phase increment values.
*
* #### bw_phase_gen_process_multi()
* ```>>> */
static inline void bw_phase_gen_process_multi(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x_mod,
float * const * y,
float * const * y_inc,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Generates and fills the first `n_samples` of the `n_channels` output
* buffers `y`, while using and updating both the common `coeffs` and each of
* the `n_channels` `state`s (control and audio rate).
*
* If `x_mod` and the channel-specific element are not `NULL`, this is used
* as a source of exponential frequency modulation (scale `1.f`/octave) for
* that channel.
*
* If `y_inc` and the channel-specific element are not `NULL`, this is filled
* with phase increment values for that channel.
*
* #### bw_phase_gen_set_frequency()
* ```>>> */
static inline void bw_phase_gen_set_frequency(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the base frequency to `value` (Hz) in `coeffs`.
*
* `value` must be finite.
*
* Default value: `1.f`.
*
* #### bw_phase_gen_set_portamento_tau()
* ```>>> */
static inline void bw_phase_gen_set_portamento_tau(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the portamento time constant `value` (s) in `coeffs`.
*
* `value` must be non-negative.
*
* Default value: `0.f`.
*
* #### bw_phase_gen_coeffs_is_valid()
* ```>>> */
static inline char bw_phase_gen_coeffs_is_valid(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_phase_gen_coeffs`.
*
* #### bw_phase_gen_state_is_valid()
* ```>>> */
static inline char bw_phase_gen_state_is_valid(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
const bw_phase_gen_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `NULL` extra cross-checks might be performed (`state`
* is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_phase_gen_state`.
* }}} */
#ifdef __cplusplus
}
#endif
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
#include <bw_math.h>
#include <bw_one_pole.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_phase_gen_coeffs_state {
bw_phase_gen_coeffs_state_invalid,
bw_phase_gen_coeffs_state_init,
bw_phase_gen_coeffs_state_set_sample_rate,
bw_phase_gen_coeffs_state_reset_coeffs
};
#endif
struct bw_phase_gen_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_phase_gen_coeffs_state state;
uint32_t reset_id;
#endif
// Sub-components
bw_one_pole_coeffs portamento_coeffs;
bw_one_pole_state portamento_state;
// Coefficients
float T;
float portamento_target;
// Parameters
float frequency;
float frequency_prev;
};
struct bw_phase_gen_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
// States
float phase;
};
static inline void bw_phase_gen_init(
bw_phase_gen_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
bw_one_pole_init(&coeffs->portamento_coeffs);
coeffs->frequency = 1.f;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_phase_gen_coeffs");
coeffs->state = bw_phase_gen_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_phase_gen_coeffs_state_init);
}
static inline void bw_phase_gen_set_sample_rate(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
bw_one_pole_set_sample_rate(&coeffs->portamento_coeffs, sample_rate);
coeffs->T = 1.f / sample_rate;
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_phase_gen_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_phase_gen_coeffs_state_set_sample_rate);
}
static inline void bw_phase_gen_do_update_coeffs_ctrl(
bw_phase_gen_coeffs * BW_RESTRICT coeffs, char force) {
bw_one_pole_update_coeffs_ctrl(&coeffs->portamento_coeffs);
if (force || coeffs->frequency != coeffs->frequency_prev) {
coeffs->portamento_target = coeffs->T * coeffs->frequency;
coeffs->frequency_prev = coeffs->frequency;
}
}
static inline void bw_phase_gen_reset_coeffs(
bw_phase_gen_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_set_sample_rate);
bw_one_pole_reset_coeffs(&coeffs->portamento_coeffs);
bw_phase_gen_do_update_coeffs_ctrl(coeffs, 1);
bw_one_pole_reset_state(&coeffs->portamento_coeffs, &coeffs->portamento_state, coeffs->portamento_target);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_phase_gen_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_phase_gen_coeffs_state_reset_coeffs);
}
static inline void bw_phase_gen_reset_state(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT state,
float phase_0,
float * BW_RESTRICT y_0,
float * BW_RESTRICT y_inc_0) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(bw_is_finite(phase_0));
BW_ASSERT(y_0 != NULL);
BW_ASSERT(y_inc_0 != NULL);
state->phase = phase_0;
*y_inc_0 = bw_one_pole_get_y_z1(&coeffs->portamento_state);
*y_0 = phase_0;
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_phase_gen_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(*y_0));
BW_ASSERT(bw_is_finite(*y_inc_0));
}
static inline void bw_phase_gen_reset_state_multi(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT const * BW_RESTRICT state,
const float * phase_0,
float * y_0,
float * y_inc_0,
size_t n_channels) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(phase_0 != NULL);
if (y_0 != NULL) {
if (y_inc_0 != NULL) {
for (size_t i = 0; i < n_channels; i++)
bw_phase_gen_reset_state(coeffs, state[i], phase_0[i], y_0 + i, y_inc_0 + i);
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_inc;
bw_phase_gen_reset_state(coeffs, state[i], phase_0[i], y_0 + i, &v_inc);
}
}
} else {
if (y_inc_0 != NULL) {
for (size_t i = 0; i < n_channels; i++) {
float v;
bw_phase_gen_reset_state(coeffs, state[i], phase_0[i], &v, y_inc_0 + i);
}
} else {
for (size_t i = 0; i < n_channels; i++) {
float v, v_inc;
bw_phase_gen_reset_state(coeffs, state[i], phase_0[i], &v, &v_inc);
}
}
}
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != NULL ? bw_has_only_finite(y_0, n_channels) : 1);
BW_ASSERT_DEEP(y_inc_0 != NULL ? bw_has_only_finite(y_inc_0, n_channels) : 1);
}
static inline void bw_phase_gen_update_coeffs_ctrl(
bw_phase_gen_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
bw_phase_gen_do_update_coeffs_ctrl(coeffs, 0);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
}
static inline void bw_phase_gen_update_coeffs_audio(
bw_phase_gen_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
bw_one_pole_process1(&coeffs->portamento_coeffs, &coeffs->portamento_state, coeffs->portamento_target);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
}
static inline float bw_phase_gen_update_phase(
bw_phase_gen_state * BW_RESTRICT state,
float inc) {
state->phase += inc;
state->phase -= bw_floorf(state->phase);
return state->phase;
}
static inline void bw_phase_gen_process1(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT state,
float * BW_RESTRICT y,
float * BW_RESTRICT y_inc) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state));
BW_ASSERT(y != NULL);
BW_ASSERT(y_inc != NULL);
*y_inc = bw_one_pole_get_y_z1(&coeffs->portamento_state);
*y = bw_phase_gen_update_phase(state, *y_inc);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(*y));
BW_ASSERT(bw_is_finite(*y_inc));
}
static inline void bw_phase_gen_process1_mod(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT state,
float x_mod,
float * BW_RESTRICT y,
float * BW_RESTRICT y_inc) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x_mod));
BW_ASSERT(y != NULL);
BW_ASSERT(y_inc != NULL);
*y_inc = bw_one_pole_get_y_z1(&coeffs->portamento_state) * bw_pow2f(x_mod);
*y = bw_phase_gen_update_phase(state, *y_inc);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(*y));
BW_ASSERT(bw_is_finite(*y_inc));
}
static inline void bw_phase_gen_process(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT state,
const float * x_mod,
float * y,
float * y_inc,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(x_mod != NULL ? bw_has_only_finite(x_mod, n_samples) : 1);
bw_phase_gen_update_coeffs_ctrl(coeffs);
if (y != NULL) {
if (x_mod != NULL) {
if (y_inc != NULL)
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
bw_phase_gen_process1_mod(coeffs, state, x_mod[i], y + i, y_inc + i);
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
float v_phase_inc;
bw_phase_gen_process1_mod(coeffs, state, x_mod[i], y + i, &v_phase_inc);
}
} else {
if (y_inc != NULL)
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
bw_phase_gen_process1(coeffs, state, y + i, y_inc + i);
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
float v_phase_inc;
bw_phase_gen_process1(coeffs, state, y + i, &v_phase_inc);
}
}
} else {
if (x_mod != NULL) {
if (y_inc != NULL)
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
float v;
bw_phase_gen_process1_mod(coeffs, state, x_mod[i], &v, y_inc + i);
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
float v, v_phase_inc;
bw_phase_gen_process1_mod(coeffs, state, x_mod[i], &v, &v_phase_inc);
}
} else {
if (y_inc != NULL)
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
float v;
bw_phase_gen_process1(coeffs, state, &v, y_inc + i);
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
float v, v_phase_inc;
bw_phase_gen_process1(coeffs, state, &v, &v_phase_inc);
}
}
}
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(y != NULL ? bw_has_only_finite(y, n_samples) : 1);
BW_ASSERT_DEEP(y_inc != NULL ? bw_has_only_finite(y_inc, n_samples) : 1);
}
static inline void bw_phase_gen_process_multi(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
bw_phase_gen_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x_mod,
float * const * y,
float * const * y_inc,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
bw_phase_gen_update_coeffs_ctrl(coeffs);
if (y != NULL) {
if (x_mod != NULL) {
if (y_inc != NULL)
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v, v_phase_inc;
if (x_mod[j])
bw_phase_gen_process1_mod(coeffs, state[j], x_mod[j][i], &v, &v_phase_inc);
else
bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc);
if (y[j])
y[j][i] = v;
if (y_inc[j])
y_inc[j][i] = v_phase_inc;
}
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v, v_phase_inc;
if (x_mod[j])
bw_phase_gen_process1_mod(coeffs, state[j], x_mod[j][i], &v, &v_phase_inc);
else
bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc);
if (y[j])
y[j][i] = v;
}
}
} else {
if (y_inc != NULL)
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v, v_phase_inc;
bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc);
if (y[j])
y[j][i] = v;
if (y_inc[j])
y_inc[j][i] = v_phase_inc;
}
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v, v_phase_inc;
bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc);
if (y[j])
y[j][i] = v;
}
}
}
} else {
if (x_mod != NULL) {
if (y_inc != NULL)
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v, v_phase_inc;
if (x_mod[j])
bw_phase_gen_process1_mod(coeffs, state[j], x_mod[j][i], &v, &v_phase_inc);
else
bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc);
if (y_inc[j])
y_inc[j][i] = v_phase_inc;
}
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v, v_phase_inc;
if (x_mod[j])
bw_phase_gen_process1_mod(coeffs, state[j], x_mod[j][i], &v, &v_phase_inc);
else
bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc);
}
}
} else {
if (y_inc != NULL)
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v, v_phase_inc;
bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc);
if (y_inc[j])
y_inc[j][i] = v_phase_inc;
}
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_phase_gen_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v, v_phase_inc;
bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc);
}
}
}
}
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs);
}
static inline void bw_phase_gen_set_frequency(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
coeffs->frequency = value;
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init);
}
static inline void bw_phase_gen_set_portamento_tau(
bw_phase_gen_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 0.f);
bw_one_pole_set_tau(&coeffs->portamento_coeffs, value);
BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init);
}
static inline char bw_phase_gen_coeffs_is_valid(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_phase_gen_coeffs"))
return 0;
if (coeffs->state < bw_phase_gen_coeffs_state_init || coeffs->state > bw_phase_gen_coeffs_state_reset_coeffs)
return 0;
#endif
if (!bw_is_finite(coeffs->frequency))
return 0;
if (!bw_one_pole_coeffs_is_valid(&coeffs->portamento_coeffs))
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_phase_gen_coeffs_state_set_sample_rate) {
if (!bw_is_finite(coeffs->T) || coeffs->T <= 0.f)
return 0;
}
if (coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs) {
if (!bw_is_finite(coeffs->portamento_target) || coeffs->portamento_target < 0.f)
return 0;
if (!bw_is_finite(coeffs->frequency_prev))
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->portamento_coeffs, &coeffs->portamento_state))
return 0;
}
#endif
return 1;
}
static inline char bw_phase_gen_state_is_valid(
const bw_phase_gen_coeffs * BW_RESTRICT coeffs,
const bw_phase_gen_state * BW_RESTRICT state) {
BW_ASSERT(state != NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_phase_gen_state"))
return 0;
if (coeffs != NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
(void)coeffs;
return bw_is_finite(state->phase) && state->phase >= 0.f && state->phase < 1.f;
}
#ifdef __cplusplus
}
#include <array>
namespace Brickworks {
/*** Public C++ API ***/
/*! api_cpp {{{
* ##### Brickworks::PhaseGen
* ```>>> */
template<size_t N_CHANNELS>
class PhaseGen {
public:
PhaseGen();
void setSampleRate(
float sampleRate);
void reset(
float phase0 = 0.f,
float * BW_RESTRICT y0 = nullptr,
float * BW_RESTRICT yInc0 = nullptr);
void reset(
float phase0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0,
std::array<float, N_CHANNELS> * BW_RESTRICT yInc0);
void reset(
const float * phase0,
float * y0 = nullptr,
float * yInc0 = nullptr);
void reset(
std::array<float, N_CHANNELS> phase0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr,
std::array<float, N_CHANNELS> * BW_RESTRICT yInc0 = nullptr);
void process(
const float * const * xMod,
float * const * y,
float * const * yInc,
size_t nSamples);
void process(
std::array<const float *, N_CHANNELS> xMod,
std::array<float *, N_CHANNELS> y,
std::array<float *, N_CHANNELS> yInc,
size_t nSamples);
void setFrequency(
float value);
void setPortamentoTau(
float value);
/*! <<<...
* }
* ```
* }}} */
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
private:
bw_phase_gen_coeffs coeffs;
bw_phase_gen_state states[N_CHANNELS];
bw_phase_gen_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
inline PhaseGen<N_CHANNELS>::PhaseGen() {
bw_phase_gen_init(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
statesP[i] = states + i;
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_phase_gen_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::reset(
float phase0,
float * BW_RESTRICT y0,
float * BW_RESTRICT yInc0) {
bw_phase_gen_reset_coeffs(&coeffs);
if (y0 != nullptr) {
if (yInc0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++)
bw_phase_gen_reset_state(&coeffs, states + i, phase0, y0 + i, yInc0 + i);
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vInc;
bw_phase_gen_reset_state(&coeffs, states + i, phase0, y0 + i, &vInc);
}
}
} else {
if (yInc0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++) {
float v;
bw_phase_gen_reset_state(&coeffs, states + i, phase0, &v, yInc0 + i);
}
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float v, vInc;
bw_phase_gen_reset_state(&coeffs, states + i, phase0, &v, &vInc);
}
}
}
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::reset(
float phase0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0,
std::array<float, N_CHANNELS> * BW_RESTRICT yInc0) {
reset(phase0, y0 != nullptr ? y0.data() : nullptr, yInc0 != nullptr ? yInc0.data() : nullptr);
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::reset(
const float * phase0,
float * y0,
float * yInc0) {
bw_phase_gen_reset_coeffs(&coeffs);
bw_phase_gen_reset_state_multi(&coeffs, statesP, phase0, y0, yInc0, N_CHANNELS);
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> phase0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0,
std::array<float, N_CHANNELS> * BW_RESTRICT yInc0) {
reset(phase0.data(), y0 != nullptr ? y0.data() : nullptr, yInc0 != nullptr ? yInc0.data() : nullptr);
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::process(
const float * const * xMod,
float * const * y,
float * const * yInc,
size_t nSamples) {
bw_phase_gen_process_multi(&coeffs, statesP, xMod, y, yInc, N_CHANNELS, nSamples);
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> xMod,
std::array<float *, N_CHANNELS> y,
std::array<float *, N_CHANNELS> yInc,
size_t nSamples) {
process(xMod.data(), y.data(), yInc.data(), nSamples);
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::setFrequency(
float value) {
bw_phase_gen_set_frequency(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void PhaseGen<N_CHANNELS>::setPortamentoTau(
float value) {
bw_phase_gen_set_portamento_tau(&coeffs, value);
}
}
#endif
#endif