304 lines
9.8 KiB
C
304 lines
9.8 KiB
C
/*
|
|
* Brickworks
|
|
*
|
|
* Copyright (C) 2023 Orastron Srl unipersonale
|
|
*
|
|
* Brickworks is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, version 3 of the License.
|
|
*
|
|
* Brickworks is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* File author: Stefano D'Angelo
|
|
*/
|
|
|
|
/*!
|
|
* module_type {{{ dsp }}}
|
|
* version {{{ 1.0.0 }}}
|
|
* requires {{{ bw_buf bw_common bw_math }}}
|
|
* description {{{
|
|
* Interpolated delay line, not smoothed.
|
|
*
|
|
* You can either use the usual API for updating coefficients and processing
|
|
* signals or you can directly write and read from the delay line which,
|
|
* for example, allows you to implement smoothing and multi-tap output.
|
|
* }}}
|
|
* changelog {{{
|
|
* <ul>
|
|
* <li>Version <strong>1.0.0</strong>:
|
|
* <ul>
|
|
* <li>Now using <code>size_t</code> instead of
|
|
* <code>BW_SIZE_T</code>.</li>
|
|
* </ul>
|
|
* </li>
|
|
* <li>Version <strong>0.6.0</strong>:
|
|
* <ul>
|
|
* <li>Removed dependency on bw_config.</li>
|
|
* </ul>
|
|
* </li>
|
|
* <li>Version <strong>0.5.0</strong>:
|
|
* <ul>
|
|
* <li>Added <code>bw_delay_process_multi()</code>.</li>
|
|
* <li>Updated mem_req/set API.</li>
|
|
* <li>Added C++ wrapper.</li>
|
|
* </ul>
|
|
* </li>
|
|
* <li>Version <strong>0.4.0</strong>:
|
|
* <ul>
|
|
* <li>First release.</li>
|
|
* </ul>
|
|
* </li>
|
|
* </ul>
|
|
* }}}
|
|
*/
|
|
|
|
#ifndef _BW_DELAY_H
|
|
#define _BW_DELAY_H
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <bw_common.h>
|
|
|
|
/*! api {{{
|
|
* #### bw_delay_coeffs
|
|
* ```>>> */
|
|
typedef struct _bw_delay_coeffs bw_delay_coeffs;
|
|
/*! <<<```
|
|
* Coefficients and related.
|
|
*
|
|
* #### bw_delay_state
|
|
* ```>>> */
|
|
typedef struct _bw_delay_state bw_delay_state;
|
|
/*! <<<```
|
|
* Internal state and related.
|
|
*
|
|
* #### bw_delay_init()
|
|
* ```>>> */
|
|
static inline void bw_delay_init(bw_delay_coeffs *BW_RESTRICT coeffs, float max_delay);
|
|
/*! <<<```
|
|
* Initializes input parameter values in `coeffs` using `max_delay` (s) as
|
|
* the maximum delay time.
|
|
*
|
|
* #### bw_delay_set_sample_rate()
|
|
* ```>>> */
|
|
static inline void bw_delay_set_sample_rate(bw_delay_coeffs *BW_RESTRICT coeffs, float sample_rate);
|
|
/*! <<<```
|
|
* Sets the `sample_rate` (Hz) value in `coeffs`.
|
|
*
|
|
* #### bw_delay_mem_req()
|
|
* ```>>> */
|
|
static inline size_t bw_delay_mem_req(const bw_delay_coeffs *BW_RESTRICT coeffs);
|
|
/*! <<<```
|
|
* Returns the size, in bytes, of contiguous memory to be supplied to
|
|
* `bw_delay_mem_set()` using `coeffs`.
|
|
*
|
|
* #### bw_delay_mem_set()
|
|
* ```>>> */
|
|
static inline void bw_delay_mem_set(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, void *mem);
|
|
/*! <<<```
|
|
* Associates the contiguous memory block `mem` to the given `state`.
|
|
*
|
|
* #### bw_delay_reset_coeffs()
|
|
* ```>>> */
|
|
static inline void bw_delay_reset_coeffs(bw_delay_coeffs *BW_RESTRICT coeffs);
|
|
/*! <<<```
|
|
* Resets coefficients in `coeffs` to assume their target values.
|
|
*
|
|
* #### bw_delay_reset_state()
|
|
* ```>>> */
|
|
static inline void bw_delay_reset_state(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state);
|
|
/*! <<<```
|
|
* Resets the given `state` to its initial values using the given `coeffs`.
|
|
*
|
|
* #### bw_delay_read()
|
|
* ```>>> */
|
|
static float bw_delay_read(const bw_delay_coeffs *BW_RESTRICT coeffs, const bw_delay_state *BW_RESTRICT state, size_t di, float df);
|
|
/*! <<<```
|
|
* Returns the interpolated value read from the delay line identified by
|
|
* `coeffs` and `state` by applying a delay of `di` + `df` samples.
|
|
*
|
|
* `df` must be in [`0.f`, `1.f`) and `di` + `df` must not exceed the delay
|
|
* line length (maximum delay times the sample rate).
|
|
*
|
|
* #### bw_delay_write()
|
|
* ```>>> */
|
|
static void bw_delay_write(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, float x);
|
|
/*! <<<```
|
|
* Pushes the new sample `x` on the delay line identified by `coeffs` and
|
|
* `state`.
|
|
*
|
|
* #### bw_delay_update_coeffs_ctrl()
|
|
* ```>>> */
|
|
static inline void bw_delay_update_coeffs_ctrl(bw_delay_coeffs *BW_RESTRICT coeffs);
|
|
/*! <<<```
|
|
* Triggers control-rate update of coefficients in `coeffs`.
|
|
*
|
|
* #### bw_delay_update_coeffs_audio()
|
|
* ```>>> */
|
|
static inline void bw_delay_update_coeffs_audio(bw_delay_coeffs *BW_RESTRICT coeffs);
|
|
/*! <<<```
|
|
* Triggers audio-rate update of coefficients in `coeffs`.
|
|
*
|
|
* #### bw_delay_process1()
|
|
* ```>>> */
|
|
static inline float bw_delay_process1(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, float x);
|
|
/*! <<<```
|
|
* Processes one input sample `x` using `coeffs`, while using and updating
|
|
* `state`. Returns the corresponding output sample.
|
|
*
|
|
* #### bw_delay_process()
|
|
* ```>>> */
|
|
static inline void bw_delay_process(bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, const float *x, float *y, int n_samples);
|
|
/*! <<<```
|
|
* Processes the first `n_samples` of the input buffer `x` and fills the
|
|
* first `n_samples` of the output buffer `y`, while using and updating both
|
|
* `coeffs` and `state` (control and audio rate).
|
|
*
|
|
* #### bw_delay_process_multi()
|
|
* ```>>> */
|
|
static inline void bw_delay_process_multi(bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state **BW_RESTRICT state, const float **x, float **y, int n_channels, int n_samples);
|
|
/*! <<<```
|
|
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
|
|
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
|
|
* using and updating both the common `coeffs` and each of the `n_channels`
|
|
* `state`s (control and audio rate).
|
|
*
|
|
* #### bw_delay_set_delay()
|
|
* ```>>> */
|
|
static inline void bw_delay_set_delay(bw_delay_coeffs *BW_RESTRICT coeffs, float value);
|
|
/*! <<<```
|
|
* Sets the delay time `value` (s) in `coeffs`.
|
|
*
|
|
* Default value: `0.f`.
|
|
*
|
|
* #### bw_delay_get_length()
|
|
* ```>>> */
|
|
static inline size_t bw_delay_get_length(const bw_delay_coeffs *BW_RESTRICT coeffs);
|
|
/*! <<<```
|
|
* Returns the length of the delay line in samples.
|
|
* }}} */
|
|
|
|
/*** Implementation ***/
|
|
|
|
/* WARNING: This part of the file is not part of the public API. Its content may
|
|
* change at any time in future versions. Please, do not use it directly. */
|
|
|
|
#include <bw_buf.h>
|
|
#include <bw_math.h>
|
|
|
|
struct _bw_delay_coeffs {
|
|
// Coefficients
|
|
float fs;
|
|
size_t len;
|
|
|
|
size_t di;
|
|
float df;
|
|
|
|
// Parameters
|
|
float max_delay;
|
|
float delay;
|
|
char delay_changed;
|
|
};
|
|
|
|
struct _bw_delay_state {
|
|
float *buf;
|
|
size_t idx;
|
|
};
|
|
|
|
static inline void bw_delay_init(bw_delay_coeffs *BW_RESTRICT coeffs, float max_delay) {
|
|
coeffs->max_delay = max_delay;
|
|
coeffs->delay = 0.f;
|
|
}
|
|
|
|
static inline void bw_delay_set_sample_rate(bw_delay_coeffs *BW_RESTRICT coeffs, float sample_rate) {
|
|
coeffs->fs = sample_rate;
|
|
coeffs->len = (size_t)bw_ceilf(coeffs->fs * coeffs->max_delay) + 1;
|
|
}
|
|
|
|
static inline size_t bw_delay_mem_req(const bw_delay_coeffs *BW_RESTRICT coeffs) {
|
|
return coeffs->len * sizeof(float);
|
|
}
|
|
|
|
static inline void bw_delay_mem_set(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, void *mem) {
|
|
(void)coeffs;
|
|
state->buf = (float *)mem;
|
|
}
|
|
|
|
static inline void bw_delay_reset_coeffs(bw_delay_coeffs *BW_RESTRICT coeffs) {
|
|
coeffs->delay_changed = 1;
|
|
bw_delay_update_coeffs_ctrl(coeffs);
|
|
}
|
|
|
|
static inline void bw_delay_reset_state(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state) {
|
|
bw_buf_fill(state->buf, 0.f, coeffs->len);
|
|
state->idx = 0;
|
|
}
|
|
|
|
static float bw_delay_read(const bw_delay_coeffs *BW_RESTRICT coeffs, const bw_delay_state *BW_RESTRICT state, size_t di, float df) {
|
|
const size_t n = (state->idx + (state->idx >= di ? 0 : coeffs->len)) - di;
|
|
const size_t p = (n ? n : coeffs->len) - 1;
|
|
return state->buf[n] + df * (state->buf[p] - state->buf[n]);
|
|
}
|
|
|
|
static void bw_delay_write(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, float x) {
|
|
state->idx++;
|
|
state->idx = state->idx == coeffs->len ? 0 : state->idx;
|
|
state->buf[state->idx] = x;
|
|
}
|
|
|
|
static inline void bw_delay_update_coeffs_ctrl(bw_delay_coeffs *BW_RESTRICT coeffs) {
|
|
if (coeffs->delay_changed) {
|
|
float i;
|
|
bw_intfracf(coeffs->fs * coeffs->delay, &i, &coeffs->df);
|
|
coeffs->di = (size_t)i;
|
|
coeffs->delay_changed = 0;
|
|
}
|
|
}
|
|
|
|
static inline void bw_delay_update_coeffs_audio(bw_delay_coeffs *BW_RESTRICT coeffs) {
|
|
(void)coeffs;
|
|
}
|
|
|
|
static inline float bw_delay_process1(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, float x) {
|
|
bw_delay_write(coeffs, state, x);
|
|
return bw_delay_read(coeffs, state, coeffs->di, coeffs->df);
|
|
}
|
|
|
|
static inline void bw_delay_process(bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, const float *x, float *y, int n_samples) {
|
|
bw_delay_update_coeffs_ctrl(coeffs);
|
|
for (int i = 0; i < n_samples; i++)
|
|
y[i] = bw_delay_process1(coeffs, state, x[i]);
|
|
}
|
|
|
|
static inline void bw_delay_process_multi(bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state **BW_RESTRICT state, const float **x, float **y, int n_channels, int n_samples) {
|
|
bw_delay_update_coeffs_ctrl(coeffs);
|
|
for (int i = 0; i < n_samples; i++)
|
|
for (int j = 0; j < n_channels; j++)
|
|
y[j][i] = bw_delay_process1(coeffs, state[j], x[j][i]);
|
|
}
|
|
|
|
static inline void bw_delay_set_delay(bw_delay_coeffs *BW_RESTRICT coeffs, float value) {
|
|
if (value != coeffs->delay) {
|
|
coeffs->delay = value;
|
|
coeffs->delay_changed = 1;
|
|
}
|
|
}
|
|
|
|
static inline size_t bw_delay_get_length(const bw_delay_coeffs *BW_RESTRICT coeffs) {
|
|
return coeffs->len;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|