229 lines
7.0 KiB
C
229 lines
7.0 KiB
C
/*
|
|
* Brickworks
|
|
*
|
|
* Copyright (C) 2023 Orastron Srl unipersonale
|
|
*
|
|
* Brickworks is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, version 3 of the License.
|
|
*
|
|
* Brickworks is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* File author: Stefano D'Angelo
|
|
*/
|
|
|
|
/*!
|
|
* module_type {{{ dsp }}}
|
|
* version {{{ 0.4.0 }}}
|
|
* requires {{{ bw_config bw_common bw_math }}}
|
|
* description {{{
|
|
* Aribtrary-ratio IIR sample rate converter.
|
|
* }}}
|
|
* changelog {{{
|
|
* <ul>
|
|
* <li>Version <strong>0.4.0</strong>:
|
|
* <ul>
|
|
* <li>First release.</li>
|
|
* </ul>
|
|
* </li>
|
|
* </ul>
|
|
* }}}
|
|
*/
|
|
|
|
#ifndef _BW_SRC_H
|
|
#define _BW_SRC_H
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <bw_common.h>
|
|
|
|
/*! api {{{
|
|
* #### bw_src_coeffs
|
|
* ```>>> */
|
|
typedef struct _bw_src_coeffs bw_src_coeffs;
|
|
/*! <<<```
|
|
* Coefficients and related.
|
|
*
|
|
* ### bw_src_state
|
|
* ```>>> */
|
|
typedef struct _bw_src_state bw_src_state;
|
|
/*! <<<```
|
|
* Internal state and related.
|
|
*
|
|
* #### bw_src_init()
|
|
* ```>>> */
|
|
static inline void bw_src_init(bw_src_coeffs *BW_RESTRICT coeffs, float ratio);
|
|
/*! <<<```
|
|
* Initializes `coeffs` using the given resampling `ratio`.
|
|
*
|
|
* `ratio` must be positive and determines the sample rate of the output
|
|
* signal, which will be equal to `ratio` times the sample rate of the input
|
|
* signal.
|
|
*
|
|
* #### bw_src_reset_state()
|
|
* ```>>> */
|
|
static inline void bw_src_reset_state(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state *BW_RESTRICT state, float x0);
|
|
/*! <<<```
|
|
* Resets the given `state` to its initial values using the given `coeffs`
|
|
* and the quiescent/initial input value `x0`.
|
|
*
|
|
* #### bw_src_process()
|
|
* ```>>> */
|
|
static inline void bw_src_process(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state *BW_RESTRICT state, const float *x, float *y, int *n_in_samples, int *n_out_samples);
|
|
/*! <<<```
|
|
* Processes at most the first `n_in_samples` of the input buffer `x` and
|
|
* fills the output buffer `y` with at most `n_out_samples` using `coeffs`,
|
|
* while using and updating `state`.
|
|
*
|
|
* After the call `n_in_samples` and `n_out_samples` will contain the actual
|
|
* number of consumed input samples and generated output samples,
|
|
* respectively.
|
|
* }}} */
|
|
|
|
/*** Implementation ***/
|
|
|
|
/* WARNING: This part of the file is not part of the public API. Its content may
|
|
* change at any time in future versions. Please, do not use it directly. */
|
|
|
|
#include <bw_math.h>
|
|
|
|
struct _bw_src_coeffs {
|
|
float k;
|
|
float a1;
|
|
float a2;
|
|
float a3;
|
|
float a4;
|
|
float b0;
|
|
float b1;
|
|
float b2;
|
|
};
|
|
|
|
struct _bw_src_state {
|
|
float i;
|
|
float z1;
|
|
float z2;
|
|
float z3;
|
|
float z4;
|
|
float xz1;
|
|
float xz2;
|
|
float xz3;
|
|
};
|
|
|
|
static inline void bw_src_init(bw_src_coeffs *BW_RESTRICT coeffs, float ratio) {
|
|
coeffs->k = ratio >= 1.f ? 1.f / ratio : -1.f / ratio;
|
|
// 4th-degree Butterworth with cutoff at ratio * Nyquist, using bilinear transform w/ prewarping
|
|
const float fc = bw_minf((float)(ratio >= 1.f ? 1.f / ratio : ratio), 0.9f);
|
|
const float T = bw_tanf_3(1.570796326794896f * (float)fc);
|
|
const float T2 = T * T;
|
|
const float k = 1.f / (T * (T * (T * (T + 2.613125929752753f) + 3.414213562373095f) + 2.613125929752753f) + 1.f);
|
|
coeffs->b0 = k * T2 * T2;
|
|
coeffs->b1 = 4.f * coeffs->b0;
|
|
coeffs->b2 = 6.f * coeffs->b0;
|
|
coeffs->a1 = k * (T * (T2 * (4.f * T + 5.226251859505504f) - 5.226251859505504f) - 4.f);
|
|
coeffs->a2 = k * (T2 * (6.f * T2 - 6.82842712474619f) + 6.f);
|
|
coeffs->a3 = k * (T * (T2 * (4.f * T - 5.226251859505504f) + 5.226251859505504f) - 4.f);
|
|
coeffs->a4 = k * (T * (T * (T * (T - 2.613125929752753f) + 3.414213562373095f) - 2.613125929752753f) + 1.f);
|
|
}
|
|
|
|
static inline void bw_src_reset_state(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state *BW_RESTRICT state, float x0) {
|
|
if (coeffs->k < 0) {
|
|
// DF-II
|
|
state->z1 = x0 / (1.f + coeffs->a1 + coeffs->a2 + coeffs->a3 + coeffs->a4);
|
|
state->z2 = state->z1;
|
|
state->z3 = state->z2;
|
|
state->z4 = state->z3;
|
|
} else {
|
|
// TDF-II
|
|
state->z4 = (coeffs->b0 - coeffs->a4) * x0;
|
|
state->z3 = (coeffs->b1 - coeffs->a3) * x0 + state->z4;
|
|
state->z2 = (coeffs->b2 - coeffs->a2) * x0 + state->z3;
|
|
state->z1 = (coeffs->b1 - coeffs->a1) * x0 + state->z2;
|
|
}
|
|
state->i = 0.f;
|
|
state->xz1 = x0;
|
|
state->xz2 = x0;
|
|
state->xz3 = x0;
|
|
}
|
|
|
|
static inline void bw_src_process(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state *BW_RESTRICT state, const float *x, float *y, int *n_in_samples, int *n_out_samples) {
|
|
int i = 0;
|
|
int j = 0;
|
|
if (coeffs->k < 0) {
|
|
while (i < *n_in_samples && j < *n_out_samples) {
|
|
// DF-II
|
|
const float z0 = x[i] - coeffs->a1 * state->z1 - coeffs->a2 * state->z2 - coeffs->a3 * state->z3 - coeffs->a4 * state->z4;
|
|
const float o = coeffs->b0 * (z0 + state->z4) + coeffs->b1 * (state->z1 + state->z3) + coeffs->b2 * state->z2;
|
|
if (state->i >= 0.f) {
|
|
// 3rd degree Lagrange interpolation + Horner's rule
|
|
const float k1 = state->xz1 - state->xz2;
|
|
const float k2 = 0.333333333333333f * (state->xz3 - o);
|
|
const float k3 = o - k1;
|
|
const float k4 = k3 - state->xz1;
|
|
const float a = k2 - k4 - 0.5f * k4;
|
|
const float b = k3 - k1 - 0.5f * (state->xz1 + state->xz3);
|
|
const float c = 0.5f * (k1 + k2);
|
|
y[j] = o + state->i * (a + state->i * (b + state->i * c));
|
|
state->i += coeffs->k;
|
|
j++;
|
|
}
|
|
state->z4 = state->z3;
|
|
state->z3 = state->z2;
|
|
state->z2 = state->z1;
|
|
state->z1 = z0;
|
|
state->xz3 = state->xz2;
|
|
state->xz2 = state->xz1;
|
|
state->xz1 = o;
|
|
state->i += 1.f;
|
|
i++;
|
|
}
|
|
} else {
|
|
while (i < *n_in_samples && j < *n_out_samples) {
|
|
while (state->i < 1.f && j < *n_out_samples) {
|
|
// 3rd degree Lagrange interpolation + Horner's rule
|
|
const float k1 = state->xz2 - state->xz1;
|
|
const float k2 = 0.333333333333333f * (x[i] - state->xz3);
|
|
const float k3 = state->xz3 - k1;
|
|
const float k4 = state->xz2 - k3;
|
|
const float a = k2 + k4 + 0.5f * k4;
|
|
const float b = k3 - k1 - 0.5f * (x[i] + state->xz2);
|
|
const float c = 0.5f * (k1 + k2);
|
|
const float o = state->xz3 + state->i * (a + state->i * (b + state->i * c));
|
|
// TDF-II
|
|
const float v0 = coeffs->b0 * o;
|
|
const float v1 = coeffs->b1 * o;
|
|
const float v2 = coeffs->b2 * o;
|
|
y[j] = v0 + state->z1;
|
|
state->z1 = v1 - coeffs->a1 * y[j] + state->z2;
|
|
state->z2 = coeffs->b2 * o - coeffs->a2 * y[j] + state->z3;
|
|
state->z3 = v1 - coeffs->a3 * y[j] + state->z4;
|
|
state->z4 = v0 - coeffs->a4 * y[j];
|
|
state->i += coeffs->k;
|
|
j++;
|
|
}
|
|
if (state->i >= 1.f) {
|
|
state->xz3 = state->xz2;
|
|
state->xz2 = state->xz1;
|
|
state->xz1 = x[i];
|
|
state->i -= 1.f;
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
*n_in_samples = i;
|
|
*n_out_samples = j;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|