brickworks/include/bw_svf.h
2024-02-02 17:42:12 +01:00

1298 lines
40 KiB
C++

/*
* Brickworks
*
* Copyright (C) 2022-2024 Orastron Srl unipersonale
*
* Brickworks is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* Brickworks is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
*
* File author: Stefano D'Angelo
*/
/*!
* module_type {{{ dsp }}}
* version {{{ 1.1.0 }}}
* requires {{{ bw_common bw_math bw_one_pole }}}
* description {{{
* State variable filter (2nd order, 12 dB/oct) model with separated lowpass,
* bandpass, and highpass outputs.
* }}}
* changelog {{{
* <ul>
* <li>Version <strong>1.1.0</strong>:
* <ul>
* <li>Now using <code>BW_NULL</code> and
* <code>BW_CXX_NO_ARRAY</code>.</li>
* </ul>
* </li>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Changed model to get positive polarity at the bandpass
* output.</li>
* <li>Limited actual prewarping frequency to prevent instability.</li>
* <li>Added <code>bw_svf_reset_state_multi()</code> and updated C++
* API in this regard.</li>
* <li>Now <code>bw_svf_reset_state()</code> returns the initial output
* values.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li><code>bw_svf_process()</code> and
* <code>bw_svf_process_multi()</code> now use <code>size_t</code>
* to count samples and channels.</li>
* <li>Added more <code>const</code> and <code>BW_RESTRICT</code>
* specifiers to input arguments and implementation.</li>
* <li>Moved C++ code to C header.</li>
* <li>Added overloaded C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
* <ul>
* <li>Removed dependency on bw_config.</li>
* </ul>
* </li>
* <li>Version <strong>0.5.0</strong>:
* <ul>
* <li>Added <code>bw_svf_process_multi()</code>.</li>
* <li>Fixed bug in <code>bw_svf_process()</code> when only
* <code>y_hp</code> is <code>NULL</code>.</li>
* <li>Fixed prewarping-related stability bug.</li>
* <li>Added C++ wrapper.</li>
* </ul>
* </li>
* <li>Version <strong>0.4.0</strong>:
* <ul>
* <li>Added initial input value to
* <code>bw_svf_reset_state()</code>.</li>
* <li>Fixed unused parameter warnings.</li>
* </ul>
* </li>
* <li>Version <strong>0.3.0</strong>:
* <ul>
* <li>Strenghtened algorithm for modulation.</li>
* <li>Added prewarping control parameters (prewarp_at_cutoff and
* prewarp_freq).</li>
* <li>Added <code>BW_RESTRICT</code> to
* <code>bw_svf_process1()</code>.</li>
* <li>Fixed typo in <code>bw_svf_set_Q()</code> documentation.</li>
* </ul>
* </li>
* <li>Version <strong>0.2.0</strong>:
* <ul>
* <li>Refactored API.</li>
* </ul>
* </li>
* <li>Version <strong>0.1.0</strong>:
* <ul>
* <li>First release.</li>
* </ul>
* </li>
* </ul>
* }}}
*/
#ifndef BW_SVF_H
#define BW_SVF_H
#include <bw_common.h>
#ifdef __cplusplus
extern "C" {
#endif
/*! api {{{
* #### bw_svf_coeffs
* ```>>> */
typedef struct bw_svf_coeffs bw_svf_coeffs;
/*! <<<```
* Coefficients and related.
*
* #### bw_svf_state
* ```>>> */
typedef struct bw_svf_state bw_svf_state;
/*! <<<```
* Internal state and related.
*
* #### bw_svf_init()
* ```>>> */
static inline void bw_svf_init(
bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_svf_set_sample_rate()
* ```>>> */
static inline void bw_svf_set_sample_rate(
bw_svf_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_svf_reset_coeffs()
* ```>>> */
static inline void bw_svf_reset_coeffs(
bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_svf_reset_state()
* ```>>> */
static inline void bw_svf_reset_state(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
float x_0,
float * BW_RESTRICT y_lp_0,
float * BW_RESTRICT y_bp_0,
float * BW_RESTRICT y_hp_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the initial input value `x_0`.
*
* The corresponding initial lowpass, bandpass, and highpass output values
* are put into `y_lp_0`, `y_bp_0`, and `y_hp_0` respectively.
*
* #### bw_svf_reset_state_multi()
* ```>>> */
static inline void bw_svf_reset_state_multi(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_lp_0,
float * y_bp_0,
float * y_hp_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding initial input value in the `x_0`
* array.
*
* The corresponding initial lowpass, bandpass, and highpass output values
* are put into the `y_lp_0`, `y_bp_0`, and `y_hp_0` arrays, respectively, if
* they are not `BW_NULL`.
*
* #### bw_svf_update_coeffs_ctrl()
* ```>>> */
static inline void bw_svf_update_coeffs_ctrl(
bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_svf_update_coeffs_audio()
* ```>>> */
static inline void bw_svf_update_coeffs_audio(
bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_svf_process1()
* ```>>> */
static inline void bw_svf_process1(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
float x,
float * BW_RESTRICT y_lp,
float * BW_RESTRICT y_bp,
float * BW_RESTRICT y_hp);
/*! <<<```
* Processes one input sample `x` using `coeffs`, while using and updating
* `state`. The lowpass, bandpass, and highpass output samples are put into
* `y_lp`, `y_bp`, and `y_hp` respectively.
*
* #### bw_svf_process()
* ```>>> */
static inline void bw_svf_process(
bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
const float * x,
float * y_lp,
float * y_bp,
float * y_hp,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffers `y_lp` (lowpass), `y_bp`
* (bandpass), and `y_hp` (highpass), if they are not `BW_NULL`, while using
* and updating both `coeffs` and `state` (control and audio rate).
*
* #### bw_svf_process_multi()
* ```>>> */
static inline void bw_svf_process_multi(
bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y_lp,
float * const * y_bp,
float * const * y_hp,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y_lp`
* (lowpass), `y_bp` (bandpass), and `y_hp` (highpass), while using and
* updating both the common `coeffs` and each of the `n_channels` `state`s
* (control and audio rate).
*
* `y_lp`, `y_bp`, and `y_hp`, or any of their elements may be `BW_NULL`.
*
* #### bw_svf_set_cutoff()
* ```>>> */
static inline void bw_svf_set_cutoff(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the cutoff frequency to the given `value` (Hz) in `coeffs`.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_svf_set_Q()
* ```>>> */
static inline void bw_svf_set_Q(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the quality factor to the given `value` in `coeffs`.
*
* Valid range: [`1e-6f`, `1e6f`].
*
* Default value: `0.5f`.
*
* #### bw_svf_set_prewarp_at_cutoff()
* ```>>> */
static inline void bw_svf_set_prewarp_at_cutoff(
bw_svf_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether bilinear transform prewarping frequency should match the
* cutoff frequency (non-`0`) or not (`0`).
*
* Default value: non-`0` (on).
*
* #### bw_svf_set_prewarp_freq()
* ```>>> */
static inline void bw_svf_set_prewarp_freq(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the prewarping frequency `value` (Hz) in `coeffs`.
*
* Only used when the prewarp\_at\_cutoff parameter is off and however
* internally limited to avoid instability.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_svf_coeffs_is_valid()
* ```>>> */
static inline char bw_svf_coeffs_is_valid(
const bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_svf_coeffs`.
*
* #### bw_svf_state_is_valid()
* ```>>> */
static inline char bw_svf_state_is_valid(
const bw_svf_coeffs * BW_RESTRICT coeffs,
const bw_svf_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `BW_NULL` extra cross-checks might be performed
* (`state` is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_svf_state`.
* }}} */
#ifdef __cplusplus
}
#endif
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
#include <bw_math.h>
#include <bw_one_pole.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_svf_coeffs_state {
bw_svf_coeffs_state_invalid,
bw_svf_coeffs_state_init,
bw_svf_coeffs_state_set_sample_rate,
bw_svf_coeffs_state_reset_coeffs
};
#endif
struct bw_svf_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_svf_coeffs_state state;
uint32_t reset_id;
#endif
// Sub-components
bw_one_pole_coeffs smooth_coeffs;
bw_one_pole_state smooth_cutoff_state;
bw_one_pole_state smooth_Q_state;
bw_one_pole_state smooth_prewarp_freq_state;
// Coefficients
float t_k;
float prewarp_freq_max;
float t;
float kf;
float kbl;
float k;
float hp_hb;
float hp_x;
// Parameters
float cutoff;
float Q;
float prewarp_k;
float prewarp_freq;
};
struct bw_svf_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
// States
float hp_z1;
float lp_z1;
float bp_z1;
float cutoff_z1;
};
static inline void bw_svf_init(
bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
bw_one_pole_init(&coeffs->smooth_coeffs);
bw_one_pole_set_tau(&coeffs->smooth_coeffs, 0.005f);
bw_one_pole_set_sticky_thresh(&coeffs->smooth_coeffs, 1e-3f);
coeffs->cutoff = 1e3f;
coeffs->Q = 0.5f;
coeffs->prewarp_freq = 1e3f;
coeffs->prewarp_k = 1.f;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_svf_coeffs");
coeffs->state = bw_svf_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_svf_coeffs_state_init);
}
static inline void bw_svf_set_sample_rate(
bw_svf_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
bw_one_pole_set_sample_rate(&coeffs->smooth_coeffs, sample_rate);
bw_one_pole_reset_coeffs(&coeffs->smooth_coeffs);
coeffs->t_k = 3.141592653589793f / sample_rate;
coeffs->prewarp_freq_max = 0.499f * sample_rate;
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_svf_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_svf_coeffs_state_set_sample_rate);
}
static inline void bw_svf_do_update_coeffs(
bw_svf_coeffs * BW_RESTRICT coeffs,
char force) {
const float prewarp_freq = coeffs->prewarp_freq + coeffs->prewarp_k * (coeffs->cutoff - coeffs->prewarp_freq);
float cutoff_cur = bw_one_pole_get_y_z1(&coeffs->smooth_cutoff_state);
float prewarp_freq_cur = bw_one_pole_get_y_z1(&coeffs->smooth_prewarp_freq_state);
float Q_cur = bw_one_pole_get_y_z1(&coeffs->smooth_Q_state);
const char cutoff_changed = force || coeffs->cutoff != cutoff_cur;
const char prewarp_freq_changed = force || prewarp_freq != prewarp_freq_cur;
const char Q_changed = force || coeffs->Q != Q_cur;
if (cutoff_changed || prewarp_freq_changed || Q_changed) {
if (cutoff_changed || prewarp_freq_changed) {
if (cutoff_changed)
cutoff_cur = bw_one_pole_process1_sticky_rel(&coeffs->smooth_coeffs, &coeffs->smooth_cutoff_state, coeffs->cutoff);
if (prewarp_freq_changed) {
prewarp_freq_cur = bw_one_pole_process1_sticky_rel(&coeffs->smooth_coeffs, &coeffs->smooth_prewarp_freq_state, prewarp_freq);
const float f = bw_minf(prewarp_freq_cur, coeffs->prewarp_freq_max);
coeffs->t = bw_tanf(coeffs->t_k * f);
coeffs->kf = coeffs->t * bw_rcpf(f);
}
coeffs->kbl = coeffs->kf * cutoff_cur;
}
if (Q_changed) {
Q_cur = bw_one_pole_process1_sticky_abs(&coeffs->smooth_coeffs, &coeffs->smooth_Q_state, coeffs->Q);
coeffs->k = bw_rcpf(Q_cur);
}
coeffs->hp_hb = coeffs->k + coeffs->kbl;
coeffs->hp_x = bw_rcpf(1.f + coeffs->kbl * coeffs->hp_hb);
}
}
static inline void bw_svf_reset_coeffs(
bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_set_sample_rate);
bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_cutoff_state, coeffs->cutoff);
bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_Q_state, coeffs->Q);
bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_prewarp_freq_state, coeffs->prewarp_freq + coeffs->prewarp_k * (coeffs->cutoff - coeffs->prewarp_freq));
bw_svf_do_update_coeffs(coeffs, 1);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_svf_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_svf_coeffs_state_reset_coeffs);
}
static inline void bw_svf_reset_state(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
float x_0,
float * BW_RESTRICT y_lp_0,
float * BW_RESTRICT y_bp_0,
float * BW_RESTRICT y_hp_0) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT(bw_is_finite(x_0));
BW_ASSERT(y_lp_0 != BW_NULL);
BW_ASSERT(y_bp_0 != BW_NULL);
BW_ASSERT(y_hp_0 != BW_NULL);
BW_ASSERT(y_lp_0 != y_bp_0);
BW_ASSERT(y_lp_0 != y_hp_0);
BW_ASSERT(y_bp_0 != y_hp_0);
state->hp_z1 = 0.f;
state->lp_z1 = x_0;
state->bp_z1 = 0.f;
state->cutoff_z1 = coeffs->cutoff;
*y_lp_0 = x_0;
*y_bp_0 = 0.f;
*y_hp_0 = 0.f;
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_svf_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(*y_lp_0));
BW_ASSERT(bw_is_finite(*y_bp_0));
BW_ASSERT(bw_is_finite(*y_hp_0));
}
static inline void bw_svf_reset_state_multi(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_lp_0,
float * y_bp_0,
float * y_hp_0,
size_t n_channels) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x_0 != BW_NULL);
if (y_lp_0 != BW_NULL) {
if (y_bp_0 != BW_NULL) {
if (y_hp_0 != BW_NULL) {
for (size_t i = 0; i < n_channels; i++)
bw_svf_reset_state(coeffs, state[i], x_0[i], y_lp_0 + i, y_bp_0 + i, y_hp_0 + i);
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_hp;
bw_svf_reset_state(coeffs, state[i], x_0[i], y_lp_0 + i, y_bp_0 + i, &v_hp);
}
}
} else {
if (y_hp_0 != BW_NULL) {
for (size_t i = 0; i < n_channels; i++) {
float v_bp;
bw_svf_reset_state(coeffs, state[i], x_0[i], y_lp_0 + i, &v_bp, y_hp_0 + i);
}
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_bp, v_hp;
bw_svf_reset_state(coeffs, state[i], x_0[i], y_lp_0 + i, &v_bp, &v_hp);
}
}
}
} else {
if (y_bp_0 != BW_NULL) {
if (y_hp_0 != BW_NULL) {
for (size_t i = 0; i < n_channels; i++) {
float v_lp;
bw_svf_reset_state(coeffs, state[i], x_0[i], &v_lp, y_bp_0 + i, y_hp_0 + i);
}
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_lp, v_hp;
bw_svf_reset_state(coeffs, state[i], x_0[i], &v_lp, y_bp_0 + i, &v_hp);
}
}
} else {
if (y_hp_0 != BW_NULL) {
for (size_t i = 0; i < n_channels; i++) {
float v_lp, v_bp;
bw_svf_reset_state(coeffs, state[i], x_0[i], &v_lp, &v_bp, y_hp_0 + i);
}
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_lp, v_bp, v_hp;
bw_svf_reset_state(coeffs, state[i], x_0[i], &v_lp, &v_bp, &v_hp);
}
}
}
}
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_lp_0 != BW_NULL ? bw_has_only_finite(y_lp_0, n_channels) : 1);
BW_ASSERT_DEEP(y_bp_0 != BW_NULL ? bw_has_only_finite(y_bp_0, n_channels) : 1);
BW_ASSERT_DEEP(y_hp_0 != BW_NULL ? bw_has_only_finite(y_hp_0, n_channels) : 1);
}
static inline void bw_svf_update_coeffs_ctrl(
bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
(void)coeffs;
}
static inline void bw_svf_update_coeffs_audio(
bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
bw_svf_do_update_coeffs(coeffs, 0);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
}
static inline void bw_svf_process1(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
float x,
float * BW_RESTRICT y_lp,
float * BW_RESTRICT y_bp,
float * BW_RESTRICT y_hp) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
BW_ASSERT(y_lp != BW_NULL);
BW_ASSERT(y_bp != BW_NULL);
BW_ASSERT(y_hp != BW_NULL);
BW_ASSERT(y_lp != y_bp);
BW_ASSERT(y_lp != y_hp);
BW_ASSERT(y_bp != y_hp);
const float kk = coeffs->kf * state->cutoff_z1;
const float lp_xz1 = state->lp_z1 + kk * state->bp_z1;
const float bp_xz1 = state->bp_z1 + kk * state->hp_z1;
*y_hp = coeffs->hp_x * (x - coeffs->hp_hb * bp_xz1 - lp_xz1);
*y_bp = bp_xz1 + coeffs->kbl * *y_hp;
*y_lp = lp_xz1 + coeffs->kbl * *y_bp;
state->hp_z1 = *y_hp;
state->lp_z1 = *y_lp;
state->bp_z1 = *y_bp;
state->cutoff_z1 = bw_one_pole_get_y_z1(&coeffs->smooth_cutoff_state);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(*y_lp));
BW_ASSERT(bw_is_finite(*y_bp));
BW_ASSERT(bw_is_finite(*y_hp));
}
static inline void bw_svf_process(
bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
const float * x,
float * y_lp,
float * y_bp,
float * y_hp,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT(x != BW_NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
BW_ASSERT(y_lp == BW_NULL || y_bp == BW_NULL || y_lp != y_bp);
BW_ASSERT(y_lp == BW_NULL || y_hp == BW_NULL || y_lp != y_hp);
BW_ASSERT(y_bp == BW_NULL || y_hp == BW_NULL || y_bp != y_hp);
if (y_lp != BW_NULL) {
if (y_bp != BW_NULL) {
if (y_hp != BW_NULL) {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
bw_svf_process1(coeffs, state, x[i], y_lp + i, y_bp + i, y_hp + i);
}
} else {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
float v_hp;
bw_svf_process1(coeffs, state, x[i], y_lp + i, y_bp + i, &v_hp);
}
}
} else {
if (y_hp != BW_NULL) {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
float v_bp;
bw_svf_process1(coeffs, state, x[i], y_lp + i, &v_bp, y_hp + i);
}
} else {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
float v_bp, v_hp;
bw_svf_process1(coeffs, state, x[i], y_lp + i, &v_bp, &v_hp);
}
}
}
} else {
if (y_bp != BW_NULL) {
if (y_hp != BW_NULL) {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
float v_lp;
bw_svf_process1(coeffs, state, x[i], &v_lp, y_bp + i, y_hp + i);
}
} else {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
float v_lp, v_hp;
bw_svf_process1(coeffs, state, x[i], &v_lp, y_bp + i, &v_hp);
}
}
} else {
if (y_hp != BW_NULL) {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
float v_lp, v_bp;
bw_svf_process1(coeffs, state, x[i], &v_lp, &v_bp, y_hp + i);
}
} else {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state, x[i], &v_lp, &v_bp, &v_hp);
}
}
}
}
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(y_lp != BW_NULL ? bw_has_only_finite(y_lp, n_samples) : 1);
BW_ASSERT_DEEP(y_bp != BW_NULL ? bw_has_only_finite(y_bp, n_samples) : 1);
BW_ASSERT_DEEP(y_hp != BW_NULL ? bw_has_only_finite(y_hp, n_samples) : 1);
}
static inline void bw_svf_process_multi(
bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y_lp,
float * const * y_bp,
float * const * y_hp,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x != BW_NULL);
BW_ASSERT(y_lp == BW_NULL || y_bp == BW_NULL || y_lp != y_bp);
BW_ASSERT(y_lp == BW_NULL || y_hp == BW_NULL || y_lp != y_hp);
BW_ASSERT(y_bp == BW_NULL || y_hp == BW_NULL || y_bp != y_hp);
#ifndef BW_NO_DEBUG
if (y_lp != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(y_lp[i] == BW_NULL || y_lp[j] == BW_NULL || y_lp[i] != y_lp[j]);
if (y_bp != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(y_bp[i] == BW_NULL || y_bp[j] == BW_NULL || y_bp[i] != y_bp[j]);
if (y_hp != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(y_hp[i] == BW_NULL || y_hp[j] == BW_NULL || y_hp[i] != y_hp[j]);
if (y_lp != BW_NULL && y_bp != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
for (size_t j = 0; j < n_channels; j++)
BW_ASSERT(y_lp[i] == BW_NULL || y_bp[j] == BW_NULL || y_lp[i] != y_bp[j]);
if (y_lp != BW_NULL && y_hp != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
for (size_t j = 0; j < n_channels; j++)
BW_ASSERT(y_lp[i] == BW_NULL || y_hp[j] == BW_NULL || y_lp[i] != y_hp[j]);
if (y_bp != BW_NULL && y_hp != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
for (size_t j = 0; j < n_channels; j++)
BW_ASSERT(y_bp[i] == BW_NULL || y_hp[j] == BW_NULL || y_bp[i] != y_hp[j]);
#endif
if (y_lp != BW_NULL) {
if (y_bp != BW_NULL) {
if (y_hp != BW_NULL) {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state[j], x[j][i], &v_lp, &v_bp, &v_hp);
if (y_lp[j])
y_lp[j][i] = v_lp;
if (y_bp[j])
y_bp[j][i] = v_bp;
if (y_hp[j])
y_hp[j][i] = v_hp;
}
}
} else {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state[j], x[j][i], &v_lp, &v_bp, &v_hp);
if (y_lp[j])
y_lp[j][i] = v_lp;
if (y_bp[j])
y_bp[j][i] = v_bp;
}
}
}
} else {
if (y_hp != BW_NULL) {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state[j], x[j][i], &v_lp, &v_bp, &v_hp);
if (y_lp[j])
y_lp[j][i] = v_lp;
if (y_hp[j])
y_hp[j][i] = v_hp;
}
}
} else {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state[j], x[j][i], &v_lp, &v_bp, &v_hp);
if (y_lp[j])
y_lp[j][i] = v_lp;
}
}
}
}
} else {
if (y_bp != BW_NULL) {
if (y_hp != BW_NULL) {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state[j], x[j][i], &v_lp, &v_bp, &v_hp);
if (y_bp[j])
y_bp[j][i] = v_bp;
if (y_hp[j])
y_hp[j][i] = v_hp;
}
}
} else {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state[j], x[j][i], &v_lp, &v_bp, &v_hp);
if (y_bp[j])
y_bp[j][i] = v_bp;
}
}
}
} else {
if (y_hp != BW_NULL) {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state[j], x[j][i], &v_lp, &v_bp, &v_hp);
if (y_hp[j])
y_hp[j][i] = v_hp;
}
}
} else {
for (size_t i = 0; i < n_samples; i++) {
bw_svf_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++) {
float v_lp, v_bp, v_hp;
bw_svf_process1(coeffs, state[j], x[j][i], &v_lp, &v_bp, &v_hp);
}
}
}
}
}
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
}
static inline void bw_svf_set_cutoff(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
coeffs->cutoff = value;
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
}
static inline void bw_svf_set_Q(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e6f);
coeffs->Q = value;
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
}
static inline void bw_svf_set_prewarp_at_cutoff(
bw_svf_coeffs * BW_RESTRICT coeffs,
char value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
coeffs->prewarp_k = value ? 1.f : 0.f;
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
}
static inline void bw_svf_set_prewarp_freq(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
coeffs->prewarp_freq = value;
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
}
static inline char bw_svf_coeffs_is_valid(
const bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_svf_coeffs"))
return 0;
if (coeffs->state < bw_svf_coeffs_state_init || coeffs->state > bw_svf_coeffs_state_reset_coeffs)
return 0;
#endif
if (!bw_is_finite(coeffs->cutoff) || coeffs->cutoff < 1e-6f || coeffs->cutoff > 1e12f)
return 0;
if (!bw_is_finite(coeffs->Q) || coeffs->Q < 1e-6f || coeffs->Q > 1e6f)
return 0;
if (!bw_is_finite(coeffs->prewarp_k) || (coeffs->prewarp_k != 0.f && coeffs->prewarp_k != 1.f))
return 0;
if (!bw_is_finite(coeffs->prewarp_freq) || coeffs->prewarp_freq < 1e-6f || coeffs->prewarp_freq > 1e12f)
return 0;
if (!bw_one_pole_coeffs_is_valid(&coeffs->smooth_coeffs))
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_svf_coeffs_state_set_sample_rate) {
if (!bw_is_finite(coeffs->t_k) || coeffs->t_k <= 0.f)
return 0;
if (!bw_is_finite(coeffs->prewarp_freq_max) || coeffs->prewarp_freq_max <= 0.f)
return 0;
}
if (coeffs->state >= bw_svf_coeffs_state_reset_coeffs) {
if (!bw_is_finite(coeffs->t) || coeffs->t <= 0.f)
return 0;
if (!bw_is_finite(coeffs->kf) || coeffs->kf <= 0.f)
return 0;
if (!bw_is_finite(coeffs->kbl) || coeffs->kbl <= 0.f)
return 0;
if (!bw_is_finite(coeffs->k) || coeffs->k <= 0.f)
return 0;
if (!bw_is_finite(coeffs->hp_hb) || coeffs->hp_hb <= 0.f)
return 0;
if (!bw_is_finite(coeffs->hp_x) || coeffs->hp_x <= 0.f || coeffs->hp_x >= 1.f)
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_cutoff_state))
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_Q_state))
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_prewarp_freq_state))
return 0;
}
#endif
return 1;
}
static inline char bw_svf_state_is_valid(
const bw_svf_coeffs * BW_RESTRICT coeffs,
const bw_svf_state * BW_RESTRICT state) {
BW_ASSERT(state != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_svf_state"))
return 0;
if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
(void)coeffs;
if (!bw_is_finite(state->hp_z1))
return 0;
if (!bw_is_finite(state->lp_z1))
return 0;
if (!bw_is_finite(state->bp_z1))
return 0;
if (!bw_is_finite(state->cutoff_z1) || state->cutoff_z1 < 1e-6f || state->cutoff_z1 > 1e12f)
return 0;
return 1;
}
#ifdef __cplusplus
}
#ifndef BW_CXX_NO_ARRAY
# include <array>
#endif
namespace Brickworks {
/*** Public C++ API ***/
/*! api_cpp {{{
* ##### Brickworks::SVF
* ```>>> */
template<size_t N_CHANNELS>
class SVF {
public:
SVF();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT yLp0 = nullptr,
float * BW_RESTRICT yBp0 = nullptr,
float * BW_RESTRICT yHp0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT yLp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yBp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yHp0);
#endif
void reset(
const float * x0,
float * yLp0 = nullptr,
float * yBp0 = nullptr,
float * yHp0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT yLp0 = nullptr,
std::array<float, N_CHANNELS> * BW_RESTRICT yBp0 = nullptr,
std::array<float, N_CHANNELS> * BW_RESTRICT yHp0 = nullptr);
#endif
void process(
const float * const * x,
float * const * yLp,
float * const * yBp,
float * const * yHp,
size_t nSamples);
#ifndef BW_CXX_NO_ARRAY
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> yLp,
std::array<float *, N_CHANNELS> yBp,
std::array<float *, N_CHANNELS> yHp,
size_t nSamples);
#endif
void setCutoff(
float value);
void setQ(
float value);
void setPrewarpAtCutoff(
bool value);
void setPrewarpFreq(
float value);
/*! <<<...
* }
* ```
* }}} */
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
private:
bw_svf_coeffs coeffs;
bw_svf_state states[N_CHANNELS];
bw_svf_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
inline SVF<N_CHANNELS>::SVF() {
bw_svf_init(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
statesP[i] = states + i;
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_svf_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT yLp0,
float * BW_RESTRICT yBp0,
float * BW_RESTRICT yHp0) {
bw_svf_reset_coeffs(&coeffs);
if (yLp0 != nullptr) {
if (yBp0 != nullptr) {
if (yHp0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++)
bw_svf_reset_state(&coeffs, states + i, x0, yLp0 + i, yBp0 + i, yHp0 + i);
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vHp;
bw_svf_reset_state(&coeffs, states + i, x0, yLp0 + i, yBp0 + i, &vHp);
}
}
} else {
if (yHp0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vBp;
bw_svf_reset_state(&coeffs, states + i, x0, yLp0 + i, &vBp, yHp0 + i);
}
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vBp, vHp;
bw_svf_reset_state(&coeffs, states + i, x0, yLp0 + i, &vBp, &vHp);
}
}
}
} else {
if (yBp0 != nullptr) {
if (yHp0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vLp;
bw_svf_reset_state(&coeffs, states + i, x0, &vLp, yBp0 + i, yHp0 + i);
}
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vLp, vHp;
bw_svf_reset_state(&coeffs, states + i, x0, &vLp, yBp0 + i, &vHp);
}
}
} else {
if (yHp0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vLp, vBp;
bw_svf_reset_state(&coeffs, states + i, x0, &vLp, &vBp, yHp0 + i);
}
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vLp, vBp, vHp;
bw_svf_reset_state(&coeffs, states + i, x0, &vLp, &vBp, &vHp);
}
}
}
}
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT yLp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yBp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yHp0) {
reset(x0, yLp0 != nullptr ? yLp0->data() : nullptr, yBp0 != nullptr ? yBp0->data() : nullptr, yHp0 != nullptr ? yHp0->data() : nullptr);
}
#endif
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::reset(
const float * x0,
float * yLp0,
float * yBp0,
float * yHp0) {
bw_svf_reset_coeffs(&coeffs);
bw_svf_reset_state_multi(&coeffs, statesP, x0, yLp0, yBp0, yHp0, N_CHANNELS);
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT yLp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yBp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yHp0) {
reset(x0.data(), yLp0 != nullptr ? yLp0->data() : nullptr, yBp0 != nullptr ? yBp0->data() : nullptr, yHp0 != nullptr ? yHp0->data() : nullptr);
}
#endif
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::process(
const float * const * x,
float * const * yLp,
float * const * yBp,
float * const * yHp,
size_t nSamples) {
bw_svf_process_multi(&coeffs, statesP, x, yLp, yBp, yHp, N_CHANNELS, nSamples);
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> yLp,
std::array<float *, N_CHANNELS> yBp,
std::array<float *, N_CHANNELS> yHp,
size_t nSamples) {
process(x.data(), yLp.data(), yBp.data(), yHp.data(), nSamples);
}
#endif
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setCutoff(
float value) {
bw_svf_set_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setQ(
float value) {
bw_svf_set_Q(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setPrewarpAtCutoff(
bool value) {
bw_svf_set_prewarp_at_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setPrewarpFreq(
float value) {
bw_svf_set_prewarp_freq(&coeffs, value);
}
}
#endif
#endif