brickworks/include/bw_one_pole.h
2024-02-01 15:15:47 +01:00

1422 lines
46 KiB
C++

/*
* Brickworks
*
* Copyright (C) 2022-2024 Orastron Srl unipersonale
*
* Brickworks is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* Brickworks is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
*
* File author: Stefano D'Angelo
*/
/*!
* module_type {{{ dsp }}}
* version {{{ 1.0.1 }}}
* requires {{{ bw_common bw_math }}}
* description {{{
* One-pole (6 dB/oct) lowpass filter with unitary DC gain, separate attack
* and decay time constants, and sticky target-reach threshold.
*
* This is better suited to implement smoothing than [bw_lp1](bw_lp1).
* }}}
* changelog {{{
* <ul>
* <li>Version <strong>1.0.1</strong>:
* <ul>
* <li>Now using <code>BW_NULL</code>.</li>
* <li>Replaced GCC pragmas to suppress bogus uninitialized variable
* warnings with useless harmless statement.</li>
* </ul>
* </li>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Added <code>bw_one_pole_reset_state_multi()</code> and updated
* C++ API in this regard.</li>
* <li>Now <code>bw_one_pole_reset_state()</code> returns the initial
* output value.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li>Now using <code>size_t</code> instead of
* <code>BW_SIZE_T</code>.</li>
* <li>Added more <code>const</code> and <code>BW_RESTRICT</code>
* specifiers to input arguments and implementation.</li>
* <li>Moved C++ code to C header.</li>
* <li>Added overloaded C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Now using backward Euler rather than impulse invariant
* method.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added more debugging code and added <code>coeffs</code> argument
* to <code>bw_one_pole_state_is_valid()</code>.</li>
* <li>Added pragmas to silence bogus GCC uninitialized variable
* warnings.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
* <ul>
* <li><code>bw_one_pole_process()</code> and
* <code>bw_one_pole_process_multi()</code> now use
* <code>BW_SIZE_T</code> to count samples and channels.</li>
* <li>Added debugging code.</li>
* <li>Removed dependency on bw_config.</li>
* <li>Fixed bug when setting very high cutoff values.</li>
* </ul>
* </li>
* <li>Version <strong>0.5.0</strong>:
* <ul>
* <li>Added <code>bw_one_pole_process_multi()</code>.</li>
* <li>Added C++ wrapper.</li>
* </ul>
* </li>
* <li>Version <strong>0.4.0</strong>:
* <ul>
* <li>Fixed unused parameter warnings.</li>
* </ul>
* </li>
* <li>Version <strong>0.2.0</strong>:
* <ul>
* <li>Refactored API.</li>
* </ul>
* </li>
* <li>Version <strong>0.1.0</strong>:
* <ul>
* <li>First release.</li>
* </ul>
* </li>
* </ul>
* }}}
*/
#ifndef BW_ONE_POLE_H
#define BW_ONE_POLE_H
#include <bw_common.h>
#ifdef __cplusplus
extern "C" {
#endif
/*** Public API ***/
/*! api {{{
* #### bw_one_pole_coeffs
* ```>>> */
typedef struct bw_one_pole_coeffs bw_one_pole_coeffs;
/*! <<<```
* Coefficients and related.
*
* #### bw_one_pole_state
* ```>>> */
typedef struct bw_one_pole_state bw_one_pole_state;
/*! <<<```
* Internal state and related.
*
* #### bw_one_pole_sticky_mode
* ```>>> */
typedef enum {
bw_one_pole_sticky_mode_abs,
bw_one_pole_sticky_mode_rel
} bw_one_pole_sticky_mode;
/*! <<<```
* Distance metrics for sticky behavior:
* * `bw_one_pole_sticky_mode_abs`: absolute difference (|`out` - `in`|);
* * `bw_one_pole_sticky_mode_rel`: relative difference with respect to
* input (|`out` - `in`| / |`in`|).
*
* #### bw_one_pole_init()
* ```>>> */
static inline void bw_one_pole_init(
bw_one_pole_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_one_pole_set_sample_rate()
* ```>>> */
static inline void bw_one_pole_set_sample_rate(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_one_pole_reset_coeffs()
* ```>>> */
static inline void bw_one_pole_reset_coeffs(
bw_one_pole_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_one_pole_reset_state()
* ```>>> */
static inline float bw_one_pole_reset_state(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the initial input value `x_0`.
*
* Returns the corresponding initial output value.
*
* #### bw_one_pole_reset_state_multi()
* ```>>> */
static inline void bw_one_pole_reset_state_multi(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding initial input value in the `x_0`
* array.
*
* The corresponding initial output values are written into the
* `y_0` array, if not `BW_NULL`.
*
* #### bw_one_pole_update_coeffs_ctrl()
* ```>>> */
static inline void bw_one_pole_update_coeffs_ctrl(
bw_one_pole_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_one_pole_update_coeffs_audio()
* ```>>> */
static inline void bw_one_pole_update_coeffs_audio(
bw_one_pole_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_one_pole_process1\*()
* ```>>> */
static inline float bw_one_pole_process1(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_sticky_abs(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_sticky_rel(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_asym(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_asym_sticky_abs(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_asym_sticky_rel(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
/*! <<<```
* These functions process one input sample `x` using `coeffs`, while using
* and updating `state`. They return the corresponding output sample.
*
* In particular:
* * `bw_one_pole_process1()` assumes that upgoing and downgoing cutoff/tau
* are equal and the target-reach threshold is `0.f`;
* * `bw_one_pole_process1_sticky_abs()` assumes that upgoing and downgoing
* cutoff/tau are equal, that the target-reach threshold is not `0.f`,
* and that the distance metric for sticky behavior is set to
* `bw_one_pole_sticky_mode_abs`;
* * `bw_one_pole_process1_sticky_rel()` assumes that upgoing and downgoing
* cutoff/tau are equal, that the target-reach threshold is not `0.f`,
* and that the distance metric for sticky behavior is set to
* `bw_one_pole_sticky_mode_rel`;
* * `bw_one_pole_process1_asym()` assumes that upgoing and downgoing
* cutoff/tau are different and the target-reach threshold is `0.f`;
* * `bw_one_pole_process1_asym_sticky_abs()` assumes that upgoing and
* downgoing cutoff/tau are different, that the target-reach threshold is
* not `0.f`, and that the distance metric for sticky behavior is set to
* `bw_one_pole_sticky_mode_abs`;
* * `bw_one_pole_process1_asym_sticky_rel()` assumes that upgoing and
* downgoing cutoff/tau are different, that the target-reach threshold is
* not `0.f`, and that the distance metric for sticky behavior is set to
* `bw_one_pole_sticky_mode_rel`.
*
* Such assumptions are unchecked even for debugging purposes.
*
* #### bw_one_pole_process()
* ```>>> */
static inline void bw_one_pole_process(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffer `y`, while using and updating both
* `coeffs` and `state` (control and audio rate).
*
* `y` may be `BW_NULL`.
*
* #### bw_one_pole_process_multi()
* ```>>> */
static inline void bw_one_pole_process_multi(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
* using and updating both the common `coeffs` and each of the `n_channels`
* `state`s (control and audio rate).
*
* `y` or any element of `y` may be `BW_NULL`.
*
* #### bw_one_pole_set_cutoff()
* ```>>> */
static inline void bw_one_pole_set_cutoff(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets both the upgoing (attack) and downgoing (decay) cutoff frequency to
* the given `value` (Hz) in `coeffs`.
*
* This is equivalent to calling both `bw_one_pole_set_cutoff_up()` and
* `bw_one_pole_set_cutoff_down()` with same `coeffs` and `value` or calling
* `bw_one_pole_set_tau()` with same `coeffs` and
* value = 1 / (2 * pi * `value`) (net of numerical errors).
*
* `value` must be non-negative.
*
* Default value: `INFINITY`.
*
* #### bw_one_pole_set_cutoff_up()
* ```>>> */
static inline void bw_one_pole_set_cutoff_up(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the upgoing (attack) cutoff frequency to the given `value` (Hz) in
* `coeffs`.
*
* This is equivalent to calling `bw_one_pole_set_tau_up()` with same
* `coeffs` and value = 1 / (2 * pi * `value`) (net of numerical errors).
*
* `value` must be non-negative.
*
* Default value: `INFINITY`.
*
* #### bw_one_pole_set_cutoff_down()
* ```>>> */
static inline void bw_one_pole_set_cutoff_down(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the downgoing (attack) cutoff frequency to the given `value` (Hz) in
* `coeffs`.
*
* This is equivalent to calling `bw_one_pole_set_tau_down()` with same
* `coeffs` and value = 1 / (2 * pi * `value`) (net of numerical errors).
*
* `value` must be non-negative.
*
* Default value: `INFINITY`.
*
* #### bw_one_pole_set_tau()
* ```>>> */
static inline void bw_one_pole_set_tau(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets both the upgoing (attack) and downgoing (decay) time constant to the
* given `value` (s) in `coeffs`.
*
* This is equivalent to calling both `bw_one_pole_set_tau_up()` and
* `bw_one_pole_set_tau_down()` with same `coeffs` and `value` or calling
* `bw_one_pole_set_cutoff()` with same `coeffs` and
* value = 1 / (2 * pi * `value`) (net of numerical errors).
*
* `value` must be non-negative.
*
* Default value: `0.f`.
*
* #### bw_one_pole_set_tau_up()
* ```>>> */
static inline void bw_one_pole_set_tau_up(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the upgoing (attack) time constant to the given `value` (s) in
* `coeffs`.
*
* This is equivalent to calling `bw_one_pole_set_cutoff_up()` with same
* `coeffs` and value = 1 / (2 * pi * `value`) (net of numerical errors).
*
* `value` must be non-negative.
*
* Default value: `0.f`.
*
* #### bw_one_pole_set_tau_down()
* ```>>> */
static inline void bw_one_pole_set_tau_down(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the downgoing (decay) time constant to the given `value` (s) in
* `coeffs`.
*
* This is equivalent to calling `bw_one_pole_set_cutoff_down()` with same
* `coeffs` and value = 1 / (2 * pi * `value`) (net of numerical errors).
*
* `value` must be non-negative.
*
* Default value: `0.f`.
*
* #### bw_one_pole_set_sticky_thresh()
* ```>>> */
static inline void bw_one_pole_set_sticky_thresh(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the target-reach threshold specified by `value` in `coeffs`.
*
* When the difference between the output and the input would fall under such
* threshold according to the current distance metric (see
* `bw_one_pole_set_sticky_mode()`), the output is forcefully set to be equal
* to the input value.
*
* Valid range: [`0.f`, `1e18f`].
*
* Default value: `0.f`.
*
* #### bw_one_pole_set_sticky_mode()
* ```>>> */
static inline void bw_one_pole_set_sticky_mode(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_sticky_mode value);
/*! <<<```
* Sets the current distance metric for sticky behavior to `value` in
* `coeffs`.
*
* Default value: `bw_one_pole_sticky_mode_abs`.
*
* #### bw_one_pole_get_y_z1()
* ```>>> */
static inline float bw_one_pole_get_y_z1(
const bw_one_pole_state * BW_RESTRICT state);
/*! <<<```
* Returns the last output sample as stored in `state`.
*
* #### bw_one_pole_coeffs_is_valid()
* ```>>> */
static inline char bw_one_pole_coeffs_is_valid(
const bw_one_pole_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_one_pole_coeffs`.
*
* #### bw_one_pole_state_is_valid()
* ```>>> */
static inline char bw_one_pole_state_is_valid(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
const bw_one_pole_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `BW_NULL` extra cross-checks might be performed
* (`state` is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_one_pole_state`.
* }}} */
#ifdef __cplusplus
}
#endif
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
#include <bw_math.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_one_pole_coeffs_state {
bw_one_pole_coeffs_state_invalid,
bw_one_pole_coeffs_state_init,
bw_one_pole_coeffs_state_set_sample_rate,
bw_one_pole_coeffs_state_reset_coeffs
};
#endif
struct bw_one_pole_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_one_pole_coeffs_state state;
uint32_t reset_id;
#endif
// Coefficients
float fs_2pi;
float mA1u;
float mA1d;
float st2;
// Parameters
float cutoff_up;
float cutoff_down;
float sticky_thresh;
bw_one_pole_sticky_mode sticky_mode;
int param_changed;
};
struct bw_one_pole_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
// States
float y_z1;
};
#define BW_ONE_POLE_PARAM_CUTOFF_UP 1
#define BW_ONE_POLE_PARAM_CUTOFF_DOWN (1<<1)
#define BW_ONE_POLE_PARAM_STICKY_THRESH (1<<2)
static inline void bw_one_pole_init(
bw_one_pole_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
coeffs->cutoff_up = INFINITY;
coeffs->cutoff_down = INFINITY;
coeffs->sticky_thresh = 0.f;
coeffs->sticky_mode = bw_one_pole_sticky_mode_abs;
coeffs->param_changed = ~0; // useless, just to make compilers happy about uninitialized variables
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_one_pole_coeffs");
coeffs->state = bw_one_pole_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_one_pole_coeffs_state_init);
}
static inline void bw_one_pole_set_sample_rate(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
coeffs->fs_2pi = 0.15915494309189535f * sample_rate;
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_one_pole_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_one_pole_coeffs_state_set_sample_rate);
}
static inline void bw_one_pole_do_update_coeffs_ctrl(
bw_one_pole_coeffs * BW_RESTRICT coeffs) {
if (coeffs->param_changed) {
if (coeffs->param_changed & BW_ONE_POLE_PARAM_CUTOFF_UP)
coeffs->mA1u = coeffs->cutoff_up > 1.591549430918953e8f ? 0.f : coeffs->fs_2pi * bw_rcpf(coeffs->fs_2pi + coeffs->cutoff_up);
// tau < 1 ns is instantaneous for any practical purpose
if (coeffs->param_changed & BW_ONE_POLE_PARAM_CUTOFF_DOWN)
coeffs->mA1d = coeffs->cutoff_down > 1.591549430918953e8f ? 0.f : coeffs->fs_2pi * bw_rcpf(coeffs->fs_2pi + coeffs->cutoff_down);
// as before
if (coeffs->param_changed & BW_ONE_POLE_PARAM_STICKY_THRESH)
coeffs->st2 = coeffs->sticky_thresh * coeffs->sticky_thresh;
coeffs->param_changed = 0;
}
}
static inline void bw_one_pole_reset_coeffs(
bw_one_pole_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_set_sample_rate);
coeffs->param_changed = ~0;
bw_one_pole_do_update_coeffs_ctrl(coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_one_pole_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_one_pole_coeffs_state_reset_coeffs);
}
static inline float bw_one_pole_reset_state(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x_0) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT(bw_is_finite(x_0));
(void)coeffs;
const float y = x_0;
state->y_z1 = x_0;
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_one_pole_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_one_pole_reset_state_multi(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x_0 != BW_NULL);
if (y_0 != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
y_0[i] = bw_one_pole_reset_state(coeffs, state[i], x_0[i]);
else
for (size_t i = 0; i < n_channels; i++)
bw_one_pole_reset_state(coeffs, state[i], x_0[i]);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1);
}
static inline void bw_one_pole_update_coeffs_ctrl(
bw_one_pole_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
bw_one_pole_do_update_coeffs_ctrl(coeffs);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
}
static inline void bw_one_pole_update_coeffs_audio(
bw_one_pole_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
(void)coeffs;
}
static inline float bw_one_pole_process1(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
const float y = x + coeffs->mA1u * (state->y_z1 - x);
state->y_z1 = y;
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_one_pole_process1_sticky_abs(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
float y = x + coeffs->mA1u * (state->y_z1 - x);
const float d = y - x;
if (d * d <= coeffs->st2)
y = x;
state->y_z1 = y;
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_one_pole_process1_sticky_rel(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
float y = x + coeffs->mA1u * (state->y_z1 - x);
const float d = y - x;
if (d * d <= coeffs->st2 * x * x)
y = x;
state->y_z1 = y;
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_one_pole_process1_asym(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
const float y = x + (x >= state->y_z1 ? coeffs->mA1u : coeffs->mA1d) * (state->y_z1 - x);
state->y_z1 = y;
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_one_pole_process1_asym_sticky_abs(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
float y = x + (x >= state->y_z1 ? coeffs->mA1u : coeffs->mA1d) * (state->y_z1 - x);
const float d = y - x;
if (d * d <= coeffs->st2)
y = x;
state->y_z1 = y;
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_one_pole_process1_asym_sticky_rel(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
float y = x + (x >= state->y_z1 ? coeffs->mA1u : coeffs->mA1d) * (state->y_z1 - x);
const float d = y - x;
if (d * d <= coeffs->st2 * x * x)
y = x;
state->y_z1 = y;
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_one_pole_process(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT(x != BW_NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
bw_one_pole_update_coeffs_ctrl(coeffs);
if (y != BW_NULL) {
if (coeffs->mA1u != coeffs->mA1d) {
if (coeffs->st2 != 0.f) {
if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs)
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_one_pole_process1_asym_sticky_abs(coeffs, state, x[i]);
else
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_one_pole_process1_asym_sticky_rel(coeffs, state, x[i]);
}
else {
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_one_pole_process1_asym(coeffs, state, x[i]);
}
}
else {
if (coeffs->st2 != 0.f) {
if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs)
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_one_pole_process1_sticky_abs(coeffs, state, x[i]);
else
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_one_pole_process1_sticky_rel(coeffs, state, x[i]);
}
else {
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_one_pole_process1(coeffs, state, x[i]);
}
}
} else {
if (coeffs->mA1u != coeffs->mA1d) {
if (coeffs->st2 != 0.f) {
if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs)
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_asym_sticky_abs(coeffs, state, x[i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_asym_sticky_rel(coeffs, state, x[i]);
}
else {
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_asym(coeffs, state, x[i]);
}
}
else {
if (coeffs->st2 != 0.f) {
if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs)
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_sticky_abs(coeffs, state, x[i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_sticky_rel(coeffs, state, x[i]);
}
else {
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1(coeffs, state, x[i]);
}
}
}
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(y != BW_NULL ? bw_has_only_finite(y, n_samples) : 1);
}
static inline void bw_one_pole_process_multi(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x != BW_NULL);
#ifndef BW_NO_DEBUG
if (y != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(y[i] == BW_NULL || y[j] == BW_NULL || y[i] != y[j]);
#endif
bw_one_pole_update_coeffs_ctrl(coeffs);
if (y != BW_NULL) {
if (coeffs->mA1u != coeffs->mA1d) {
if (coeffs->st2 != 0.f) {
if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs)
for (size_t j = 0; j < n_channels; j++)
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = bw_one_pole_process1_asym_sticky_abs(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_asym_sticky_abs(coeffs, state[j], x[j][i]);
else
for (size_t j = 0; j < n_channels; j++)
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = bw_one_pole_process1_asym_sticky_rel(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_asym_sticky_rel(coeffs, state[j], x[j][i]);
}
else {
for (size_t j = 0; j < n_channels; j++)
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = bw_one_pole_process1_asym(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_asym(coeffs, state[j], x[j][i]);
}
}
else {
if (coeffs->st2 != 0.f) {
if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs)
for (size_t j = 0; j < n_channels; j++)
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = bw_one_pole_process1_sticky_abs(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_sticky_abs(coeffs, state[j], x[j][i]);
else
for (size_t j = 0; j < n_channels; j++)
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = bw_one_pole_process1_sticky_rel(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1_sticky_rel(coeffs, state[j], x[j][i]);
}
else {
for (size_t j = 0; j < n_channels; j++)
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = bw_one_pole_process1(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_one_pole_process1(coeffs, state[j], x[j][i]);
}
}
} else {
if (coeffs->mA1u != coeffs->mA1d) {
if (coeffs->st2 != 0.f) {
if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs)
for (size_t i = 0; i < n_samples; i++)
for (size_t j = 0; j < n_channels; j++)
bw_one_pole_process1_asym_sticky_abs(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
for (size_t j = 0; j < n_channels; j++)
bw_one_pole_process1_asym_sticky_rel(coeffs, state[j], x[j][i]);
}
else {
for (size_t i = 0; i < n_samples; i++)
for (size_t j = 0; j < n_channels; j++)
bw_one_pole_process1_asym(coeffs, state[j], x[j][i]);
}
}
else {
if (coeffs->st2 != 0.f) {
if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs)
for (size_t i = 0; i < n_samples; i++)
for (size_t j = 0; j < n_channels; j++)
bw_one_pole_process1_sticky_abs(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
for (size_t j = 0; j < n_channels; j++)
bw_one_pole_process1_sticky_rel(coeffs, state[j], x[j][i]);
}
else {
for (size_t i = 0; i < n_samples; i++)
for (size_t j = 0; j < n_channels; j++)
bw_one_pole_process1(coeffs, state[j], x[j][i]);
}
}
}
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs);
}
static inline void bw_one_pole_set_cutoff(
bw_one_pole_coeffs *BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
bw_one_pole_set_cutoff_up(coeffs, value);
bw_one_pole_set_cutoff_down(coeffs, value);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
}
static inline void bw_one_pole_set_cutoff_up(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
if (coeffs->cutoff_up != value) {
coeffs->cutoff_up = value;
coeffs->param_changed |= BW_ONE_POLE_PARAM_CUTOFF_UP;
}
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
}
static inline void bw_one_pole_set_cutoff_down(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
if (coeffs->cutoff_down != value) {
coeffs->cutoff_down = value;
coeffs->param_changed |= BW_ONE_POLE_PARAM_CUTOFF_DOWN;
}
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
}
static inline void bw_one_pole_set_tau(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
bw_one_pole_set_tau_up(coeffs, value);
bw_one_pole_set_tau_down(coeffs, value);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
}
static inline void bw_one_pole_set_tau_up(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
bw_one_pole_set_cutoff_up(coeffs, value < 1e-9f ? INFINITY : 0.1591549430918953f * bw_rcpf(value));
// tau < 1 ns is instantaneous for any practical purpose
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
}
static inline void bw_one_pole_set_tau_down(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
bw_one_pole_set_cutoff_down(coeffs, value < 1e-9f ? INFINITY : 0.1591549430918953f * bw_rcpf(value));
// as before
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
}
static inline void bw_one_pole_set_sticky_thresh(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f && value <= 1e18f);
if (coeffs->sticky_thresh != value) {
coeffs->sticky_thresh = value;
coeffs->param_changed |= BW_ONE_POLE_PARAM_STICKY_THRESH;
}
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
}
static inline void bw_one_pole_set_sticky_mode(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_sticky_mode value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
BW_ASSERT(value == bw_one_pole_sticky_mode_abs || value == bw_one_pole_sticky_mode_rel);
coeffs->sticky_mode = value;
BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init);
}
static inline float bw_one_pole_get_y_z1(
const bw_one_pole_state * BW_RESTRICT state) {
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_one_pole_state_is_valid(BW_NULL, state));
return state->y_z1;
}
static inline char bw_one_pole_coeffs_is_valid(
const bw_one_pole_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_one_pole_coeffs"))
return 0;
if (coeffs->state < bw_one_pole_coeffs_state_init || coeffs->state > bw_one_pole_coeffs_state_reset_coeffs)
return 0;
#endif
if (bw_is_nan(coeffs->cutoff_up) || coeffs->cutoff_up < 0.f)
return 0;
if (bw_is_nan(coeffs->cutoff_down) || coeffs->cutoff_down < 0.f)
return 0;
if (!bw_is_finite(coeffs->sticky_thresh) || coeffs->sticky_thresh < 0.f || coeffs->sticky_thresh > 1e18f)
return 0;
if (coeffs->sticky_mode != bw_one_pole_sticky_mode_abs && coeffs->sticky_mode != bw_one_pole_sticky_mode_rel)
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_one_pole_coeffs_state_set_sample_rate) {
if (!bw_is_finite(coeffs->fs_2pi) || coeffs->fs_2pi <= 0.f)
return 0;
}
if (coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs) {
if (!bw_is_finite(coeffs->mA1u) || coeffs->mA1u < 0.f || coeffs->mA1u > 1.f)
return 0;
if (!bw_is_finite(coeffs->mA1d) || coeffs->mA1d < 0.f || coeffs->mA1d > 1.f)
return 0;
if (!bw_is_finite(coeffs->st2) || coeffs->st2 < 0.f)
return 0;
}
#endif
return 1;
}
static inline char bw_one_pole_state_is_valid(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
const bw_one_pole_state * BW_RESTRICT state) {
BW_ASSERT(state != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_one_pole_state"))
return 0;
if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
(void)coeffs;
return bw_is_finite(state->y_z1);
}
#undef BW_ONE_POLE_PARAM_CUTOFF_UP
#undef BW_ONE_POLE_PARAM_CUTOFF_DOWN
#undef BW_ONE_POLE_PARAM_STICKY_THRESH
#ifdef __cplusplus
}
#include <array>
namespace Brickworks {
/*** Public C++ API ***/
/*! api_cpp {{{
* ##### Brickworks::OnePole
* ```>>> */
template<size_t N_CHANNELS>
class OnePole {
public:
OnePole();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
float * const * y,
size_t nSamples);
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
void setCutoff(
float value);
void setCutoffUp(
float value);
void setCutoffDown(
float value);
void setTau(
float value);
void setTauUp(
float value);
void setTauDown(
float value);
void setStickyThresh(
float value);
void setStickyMode(
bw_one_pole_sticky_mode value);
float getYZ1(
size_t channel);
/*! <<<...
* }
* ```
* }}} */
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
private:
bw_one_pole_coeffs coeffs;
bw_one_pole_state states[N_CHANNELS];
bw_one_pole_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
inline OnePole<N_CHANNELS>::OnePole() {
bw_one_pole_init(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
statesP[i] = states + i;
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_one_pole_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT y0) {
bw_one_pole_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
y0[i] = bw_one_pole_reset_state(&coeffs, states + i, x0);
else
for (size_t i = 0; i < N_CHANNELS; i++)
bw_one_pole_reset_state(&coeffs, states + i, x0);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::reset(
const float * x0,
float * y0) {
bw_one_pole_reset_coeffs(&coeffs);
bw_one_pole_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::process(
const float * const * x,
float * const * y,
size_t nSamples) {
bw_one_pole_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
process(x.data(), y.data(), nSamples);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setCutoff(
float value) {
bw_one_pole_set_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setCutoffUp(
float value) {
bw_one_pole_set_cutoff_up(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setCutoffDown(
float value) {
bw_one_pole_set_cutoff_down(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setTau(
float value) {
bw_one_pole_set_tau(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setTauUp(
float value) {
bw_one_pole_set_tau_up(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setTauDown(
float value) {
bw_one_pole_set_tau_down(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setStickyThresh(
float value) {
bw_one_pole_set_sticky_thresh(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::setStickyMode(
bw_one_pole_sticky_mode value) {
bw_one_pole_set_sticky_mode(&coeffs, value);
}
template<size_t N_CHANNELS>
inline float OnePole<N_CHANNELS>::getYZ1(
size_t channel) {
return bw_one_pole_get_y_z1(states + channel);
}
}
#endif
#endif