brickworks/include/bw_slew_lim.h

1058 lines
33 KiB
C++

/*
* Brickworks
*
* Copyright (C) 2022-2024 Orastron Srl unipersonale
*
* Brickworks is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* Brickworks is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
*
* File author: Stefano D'Angelo
*/
/*!
* module_type {{{ dsp }}}
* version {{{ 1.1.1 }}}
* requires {{{ bw_common bw_math }}}
* description {{{
* Slew-rate limiter with separate maximum increasing and decreasing rates.
* }}}
* changelog {{{
* <ul>
* <li>Version <strong>1.1.1</strong>:
* <ul>
* <li>Added debugging check in
* <code>bw_slew_lim_process_multi()</code> to ensure that buffers
* used for both input and output appear at the same channel
* indices.</li>
* </ul>
* </li>
* <li>Version <strong>1.1.0</strong>:
* <ul>
* <li>Now using <code>BW_NULL</code> and
* <code>BW_CXX_NO_ARRAY</code>.</li>
* </ul>
* </li>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Added <code>bw_slew_lim_reset_state_multi()</code> and updated
* C++ API in this regard.</li>
* <li>Now <code>bw_slew_lim_reset_state()</code> returns the initial
* output value.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li>Added <code>bw_slew_lim_process1_none()</code>.</li>
* <li><code>bw_slew_lim_process()</code> and
* <code>bw_slew_lim_process_multi()</code> now use
* <code>size_t</code> to count samples and channels.</li>
* <li>Added more <code>const</code> and <code>BW_RESTRICT</code>
* specifiers to input arguments and implementation.</li>
* <li>Moved C++ code to C header.</li>
* <li>Added overloaded C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Fixed setting of default parameter values in
* <code>bw_slew_lim_init()</code>.</li>
* <li>Fixed documentation of
* <code>bw_slew_lim_update_coeffs_audio()</code>.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
* <ul>
* <li>Removed dependency on bw_config.</li>
* </ul>
* </li>
* <li>Version <strong>0.5.0</strong>:
* <ul>
* <li>Added <code>bw_slew_lim_process_multi()</code>.</li>
* <li>Fixed documentation of <code>bw_slew_lim_process()</code>.</li>
* <li>Fixed unused parameter warnings.</li>
* <li>Added C++ wrapper.</li>
* </ul>
* </li>
* <li>Version <strong>0.2.0</strong>:
* <ul>
* <li>Refactored API.</li>
* </ul>
* </li>
* <li>Version <strong>0.1.0</strong>:
* <ul>
* <li>First release.</li>
* </ul>
* </li>
* </ul>
* }}}
*/
#ifndef BW_SLEW_LIM_H
#define BW_SLEW_LIM_H
#include <bw_common.h>
#ifdef __cplusplus
extern "C" {
#endif
/*! api {{{
* #### bw_slew_lim_coeffs
* ```>>> */
typedef struct bw_slew_lim_coeffs bw_slew_lim_coeffs;
/*! <<<```
* Coefficients and related.
*
* #### bw_slew_lim_state
* ```>>> */
typedef struct bw_slew_lim_state bw_slew_lim_state;
/*! <<<```
* Internal state and related.
*
* #### bw_slew_lim_init()
* ```>>> */
static inline void bw_slew_lim_init(
bw_slew_lim_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_slew_lim_set_sample_rate()
* ```>>> */
static inline void bw_slew_lim_set_sample_rate(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_slew_lim_reset_coeffs()
* ```>>> */
static inline void bw_slew_lim_reset_coeffs(
bw_slew_lim_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_slew_lim_reset_state()
* ```>>> */
static inline float bw_slew_lim_reset_state(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the initial input value `x_0`.
*
* Returns the corresponding initial output value.
*
* #### bw_slew_lim_reset_state_multi()
* ```>>> */
static inline void bw_slew_lim_reset_state_multi(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding initial input value in the `x_0`
* array.
*
* The corresponding initial output values are written into the
* `y_0` array, if not `BW_NULL`.
*
* #### bw_slew_lim_update_coeffs_ctrl()
* ```>>> */
static inline void bw_slew_lim_update_coeffs_ctrl(
bw_slew_lim_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_slew_lim_update_coeffs_audio()
* ```>>> */
static inline void bw_slew_lim_update_coeffs_audio(
bw_slew_lim_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_slew_lim_process1\*()
* ```>>> */
static inline float bw_slew_lim_process1(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x);
static inline float bw_slew_lim_process1_up(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x);
static inline float bw_slew_lim_process1_down(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x);
static inline float bw_slew_lim_process1_none(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x);
/*! <<<```
* These function process one input sample `x` using `coeffs`, while using
* and updating `state`. They return the corresponding output sample.
*
* In particular:
* * `bw_slew_lim_process1()` assumes that both the maximum upgoing and
* downgoing variation rates are finite;
* * `bw_slew_lim_process1_up()` assumes that both the maximum upgoing
* variation rate is finite and the maximum downgoing variation rate is
* infinite;
* * `bw_slew_lim_process1_down()` assumes that both the maximum upgoing
* variation rate is infinite and the maximum downgoing variation rate is
* finite.
* * `bw_slew_lim_process1_none()` assumes that both the maximum upgoing and
* downgoing variation rates are infinite;
*
* Whether maximum upgoing and downgoing variation rates are actually
* infinite is unchecked even for debugging purposes.
*
* #### bw_slew_lim_process()
* ```>>> */
static inline void bw_slew_lim_process(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffer `y`, while using and updating both
* `coeffs` and `state` (control and audio rate).
*
* `y` may be `BW_NULL`.
*
* #### bw_slew_lim_process_multi()
* ```>>> */
static inline void bw_slew_lim_process_multi(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
* using and updating both the common `coeffs` and each of the `n_channels`
* `state`s (control and audio rate).
*
* `y` or any element of `y` may be `BW_NULL`.
*
* #### bw_slew_lim_set_max_rate()
* ```>>> */
static inline void bw_slew_lim_set_max_rate(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets both the maximum increasing and decreasing variation rate to the
* given `value` (1/s) in `coeffs`.
*
* `value` represents the maximum variation per second and must be
* non-negative.
*
* This is equivalent to calling both `bw_slew_lim_set_max_inc_rate()` and
* `bw_slew_lim_set_max_dec_rate()` with same `coeffs` and `value`.
*
* Default value: `INFINITY`.
* >>> */
/*! ...
* #### bw_slew_lim_set_max_rate_up()
* ```>>> */
static inline void bw_slew_lim_set_max_rate_up(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the maximum increasing variation rate to the given `value` (1/s) in
* `coeffs`.
*
* `value` represents the maximum variation per second and must be
* non-negative.
*
* Default value: `INFINITY`.
* >>> */
/*! ...
* #### bw_slew_lim_set_max_inc_rate()
* ```>>> */
static inline void bw_slew_lim_set_max_rate_down(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the maximum decreasing variation rate to the given `value` (1/s) in
* `coeffs`.
*
* `value` represents the maximum variation per second and must be
* non-negative.
*
* Default value: `INFINITY`.
*
* #### bw_slew_lim_get_y_z1()
* ```>>> */
static inline float bw_slew_lim_get_y_z1(
const bw_slew_lim_state * BW_RESTRICT state);
/*! <<<```
* Returns the last output sample as stored in `state`.
*
* #### bw_slew_lim_coeffs_is_valid()
* ```>>> */
static inline char bw_slew_lim_coeffs_is_valid(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_slew_lim_coeffs`.
*
* #### bw_slew_lim_state_is_valid()
* ```>>> */
static inline char bw_slew_lim_state_is_valid(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
const bw_slew_lim_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `BW_NULL` extra cross-checks might be performed
* (`state` is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_slew_lim_state`.
* }}} */
#ifdef __cplusplus
}
#endif
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
#include <bw_math.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_slew_lim_coeffs_state {
bw_slew_lim_coeffs_state_invalid,
bw_slew_lim_coeffs_state_init,
bw_slew_lim_coeffs_state_set_sample_rate,
bw_slew_lim_coeffs_state_reset_coeffs
};
#endif
struct bw_slew_lim_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_slew_lim_coeffs_state state;
uint32_t reset_id;
#endif
// Coefficients
float T;
float max_inc;
float max_dec;
// Parameters
float max_rate_up;
float max_rate_down;
};
struct bw_slew_lim_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
// States
float y_z1;
};
static inline void bw_slew_lim_init(
bw_slew_lim_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
coeffs->max_rate_up = INFINITY;
coeffs->max_rate_down = INFINITY;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_slew_lim_coeffs");
coeffs->state = bw_slew_lim_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_slew_lim_coeffs_state_init);
}
static inline void bw_slew_lim_set_sample_rate(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
coeffs->T = 1.f / sample_rate;
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_slew_lim_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_slew_lim_coeffs_state_set_sample_rate);
}
static inline void bw_slew_lim_do_update_coeffs_ctrl(
bw_slew_lim_coeffs * BW_RESTRICT coeffs) {
// tracking parameter changes is more trouble than it's worth
coeffs->max_inc = coeffs->T * coeffs->max_rate_up;
coeffs->max_dec = coeffs->T * coeffs->max_rate_down;
}
static inline void bw_slew_lim_reset_coeffs(
bw_slew_lim_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_set_sample_rate);
bw_slew_lim_do_update_coeffs_ctrl(coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_slew_lim_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_slew_lim_coeffs_state_reset_coeffs);
}
static inline float bw_slew_lim_reset_state(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x_0) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT(bw_is_finite(x_0));
(void)coeffs;
const float y = x_0;
state->y_z1 = x_0;
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_slew_lim_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_slew_lim_reset_state_multi(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x_0 != BW_NULL);
if (y_0 != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
y_0[i] = bw_slew_lim_reset_state(coeffs, state[i], x_0[i]);
else
for (size_t i = 0; i < n_channels; i++)
bw_slew_lim_reset_state(coeffs, state[i], x_0[i]);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1);
}
static inline void bw_slew_lim_update_coeffs_ctrl(
bw_slew_lim_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
bw_slew_lim_do_update_coeffs_ctrl(coeffs);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
}
static inline void bw_slew_lim_update_coeffs_audio(
bw_slew_lim_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
(void)coeffs;
}
static inline float bw_slew_lim_process1(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
BW_ASSERT(bw_is_finite(coeffs->max_inc) && bw_is_finite(coeffs->max_dec));
const float y = bw_clipf(x, state->y_z1 - coeffs->max_dec, state->y_z1 + coeffs->max_inc);
state->y_z1 = y;
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_slew_lim_process1_up(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
BW_ASSERT(bw_is_finite(coeffs->max_inc));
const float y = bw_minf(x, state->y_z1 + coeffs->max_inc);
state->y_z1 = y;
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_slew_lim_process1_down(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
BW_ASSERT(bw_is_finite(coeffs->max_dec));
const float y = bw_maxf(x, state->y_z1 - coeffs->max_dec);
state->y_z1 = y;
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_slew_lim_process1_none(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
(void)coeffs;
state->y_z1 = x;
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
return x;
}
static inline void bw_slew_lim_process(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT(x != BW_NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
bw_slew_lim_update_coeffs_ctrl(coeffs);
if (y != BW_NULL) {
if (coeffs->max_rate_up != INFINITY) {
if (coeffs->max_rate_down != INFINITY)
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_slew_lim_process1(coeffs, state, x[i]);
else
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_slew_lim_process1_up(coeffs, state, x[i]);
} else {
if (coeffs->max_rate_down != INFINITY)
for (size_t i = 0; i < n_samples; i++)
y[i] = bw_slew_lim_process1_down(coeffs, state, x[i]);
else {
for (size_t i = 0; i < n_samples; i++)
y[i] = x[i];
state->y_z1 = x[n_samples - 1];
}
}
} else {
if (coeffs->max_rate_up != INFINITY) {
if (coeffs->max_rate_down != INFINITY)
for (size_t i = 0; i < n_samples; i++)
bw_slew_lim_process1(coeffs, state, x[i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_slew_lim_process1_up(coeffs, state, x[i]);
} else {
if (coeffs->max_rate_down != INFINITY)
for (size_t i = 0; i < n_samples; i++)
bw_slew_lim_process1_down(coeffs, state, x[i]);
else
state->y_z1 = x[n_samples - 1];
}
}
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(y != BW_NULL ? bw_has_only_finite(y, n_samples) : 1);
}
static inline void bw_slew_lim_process_multi(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
bw_slew_lim_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x != BW_NULL);
#ifndef BW_NO_DEBUG
if (y != BW_NULL) {
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(y[i] == BW_NULL || y[j] == BW_NULL || y[i] != y[j]);
for (size_t i = 0; i < n_channels; i++)
for (size_t j = 0; j < n_channels; j++)
BW_ASSERT(i == j || x[i] != y[j]);
}
#endif
bw_slew_lim_update_coeffs_ctrl(coeffs);
if (y != BW_NULL) {
if (coeffs->max_rate_up != INFINITY) {
if (coeffs->max_rate_down != INFINITY)
for (size_t j = 0; j < n_channels; j++)
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = bw_slew_lim_process1(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_slew_lim_process1(coeffs, state[j], x[j][i]);
else
for (size_t j = 0; j < n_channels; j++)
for (size_t i = 0; i < n_samples; i++)
if (y[j] != BW_NULL)
y[j][i] = bw_slew_lim_process1_up(coeffs, state[j], x[j][i]);
else
bw_slew_lim_process1_up(coeffs, state[j], x[j][i]);
} else {
if (coeffs->max_rate_down != INFINITY)
for (size_t j = 0; j < n_channels; j++)
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = bw_slew_lim_process1_down(coeffs, state[j], x[j][i]);
else
for (size_t i = 0; i < n_samples; i++)
bw_slew_lim_process1_down(coeffs, state[j], x[j][i]);
else
for (size_t j = 0; j < n_channels; j++) {
BW_ASSERT(state[j] != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state[j]));
BW_ASSERT(x[j] != BW_NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x[j], n_samples));
if (y[j] != BW_NULL)
for (size_t i = 0; i < n_samples; i++)
y[j][i] = x[j][i];
state[j]->y_z1 = x[j][n_samples - 1];
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state[j]));
BW_ASSERT_DEEP(y[j] != BW_NULL ? bw_has_only_finite(y[j], n_samples) : 1);
}
}
} else {
if (coeffs->max_rate_up != INFINITY) {
if (coeffs->max_rate_down != INFINITY)
for (size_t j = 0; j < n_channels; j++)
for (size_t i = 0; i < n_samples; i++)
bw_slew_lim_process1(coeffs, state[j], x[j][i]);
else
for (size_t j = 0; j < n_channels; j++)
for (size_t i = 0; i < n_samples; i++)
bw_slew_lim_process1_up(coeffs, state[j], x[j][i]);
} else {
if (coeffs->max_rate_down != INFINITY)
for (size_t j = 0; j < n_channels; j++)
for (size_t i = 0; i < n_samples; i++)
bw_slew_lim_process1_down(coeffs, state[j], x[j][i]);
else
for (size_t j = 0; j < n_channels; j++) {
BW_ASSERT(state[j] != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state[j]));
BW_ASSERT(x[j] != BW_NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x[j], n_samples));
state[j]->y_z1 = x[j][n_samples - 1];
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(coeffs, state[j]));
}
}
}
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs);
}
static inline void bw_slew_lim_set_max_rate(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
bw_slew_lim_set_max_rate_up(coeffs, value);
bw_slew_lim_set_max_rate_down(coeffs, value);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_init);
}
static inline void bw_slew_lim_set_max_rate_up(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
coeffs->max_rate_up = value;
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_init);
}
static inline void bw_slew_lim_set_max_rate_down(
bw_slew_lim_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_init);
BW_ASSERT(!bw_is_nan(value));
BW_ASSERT(value >= 0.f);
coeffs->max_rate_down = value;
BW_ASSERT_DEEP(bw_slew_lim_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_slew_lim_coeffs_state_init);
}
static inline float bw_slew_lim_get_y_z1(
const bw_slew_lim_state * BW_RESTRICT state) {
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_slew_lim_state_is_valid(BW_NULL, state));
return state->y_z1;
}
static inline char bw_slew_lim_coeffs_is_valid(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_slew_lim_coeffs"))
return 0;
if (coeffs->state < bw_slew_lim_coeffs_state_init || coeffs->state > bw_slew_lim_coeffs_state_reset_coeffs)
return 0;
#endif
if (bw_is_nan(coeffs->max_rate_up) || coeffs->max_rate_up < 0.f)
return 0;
if (bw_is_nan(coeffs->max_rate_down) || coeffs->max_rate_down < 0.f)
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_slew_lim_coeffs_state_set_sample_rate) {
if (!bw_is_finite(coeffs->T) || coeffs->T <= 0.f)
return 0;
}
if (coeffs->state >= bw_slew_lim_coeffs_state_reset_coeffs) {
if (bw_is_nan(coeffs->max_inc) || coeffs->max_inc < 0.f)
return 0;
if (bw_is_nan(coeffs->max_dec) || coeffs->max_dec < 0.f)
return 0;
}
#endif
return 1;
}
static inline char bw_slew_lim_state_is_valid(
const bw_slew_lim_coeffs * BW_RESTRICT coeffs,
const bw_slew_lim_state * BW_RESTRICT state) {
BW_ASSERT(state != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_slew_lim_state"))
return 0;
if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
(void)coeffs;
return bw_is_finite(state->y_z1);
}
#ifdef __cplusplus
}
#ifndef BW_CXX_NO_ARRAY
# include <array>
#endif
namespace Brickworks {
/*** Public C++ API ***/
/*! api_cpp {{{
* ##### Brickworks::SlewLim
* ```>>> */
template<size_t N_CHANNELS>
class SlewLim {
public:
SlewLim();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
#endif
void reset(
const float * x0,
float * y0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
#endif
void process(
const float * const * x,
float * const * y,
size_t nSamples);
#ifndef BW_CXX_NO_ARRAY
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
#endif
void setMaxRate(
float value);
void setMaxRateUp(
float value);
void setMaxRateDown(
float value);
float getYZ1(
size_t channel);
/*! <<<...
* }
* ```
* }}} */
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
private:
bw_slew_lim_coeffs coeffs;
bw_slew_lim_state states[N_CHANNELS];
bw_slew_lim_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
inline SlewLim<N_CHANNELS>::SlewLim() {
bw_slew_lim_init(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
statesP[i] = states + i;
}
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_slew_lim_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT y0) {
bw_slew_lim_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
y0[i] = bw_slew_lim_reset_state(&coeffs, states + i, x0);
else
for (size_t i = 0; i < N_CHANNELS; i++)
bw_slew_lim_reset_state(&coeffs, states + i, x0);
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
#endif
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::reset(
const float * x0,
float * y0) {
bw_slew_lim_reset_coeffs(&coeffs);
bw_slew_lim_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS);
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
#endif
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::process(
const float * const * x,
float * const * y,
size_t nSamples) {
bw_slew_lim_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples);
}
#ifndef BW_CXX_NO_ARRAY
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
process(x.data(), y.data(), nSamples);
}
#endif
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::setMaxRate(
float value) {
bw_slew_lim_set_max_rate(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::setMaxRateUp(
float value) {
bw_slew_lim_set_max_rate_up(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::setMaxRateDown(
float value) {
bw_slew_lim_set_max_rate_down(&coeffs, value);
}
template<size_t N_CHANNELS>
inline float SlewLim<N_CHANNELS>::getYZ1(
size_t channel) {
return bw_slew_lim_get_y_z1(states + channel);
}
}
#endif
#endif