brickworks/include/bw_ls2.h

967 lines
30 KiB
C++

/*
* Brickworks
*
* Copyright (C) 2022-2024 Orastron Srl unipersonale
*
* Brickworks is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* Brickworks is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
*
* File author: Stefano D'Angelo
*/
/*!
* module_type {{{ dsp }}}
* version {{{ 1.0.1 }}}
* requires {{{ bw_common bw_gain bw_math bw_mm2 bw_one_pole bw_svf }}}
* description {{{
* Second-order low shelf filter (12 dB/oct) with gain asymptotically
* approaching unity as frequency increases.
* }}}
* changelog {{{
* <ul>
* <li>Version <strong>1.0.1</strong>:
* <ul>
* <li>Now using <code>BW_NULL</code>.</li>
* <li>Fixed typos in documentation of
* <code>bw_ls2_set_cutoff()</code>,
* <code>bw_ls2_set_dc_gain_lin()</code>, and
* <code>bw_ls2_set_dc_gain_dB()</code>.</li>
* <li>Replaced GCC pragmas to suppress bogus uninitialized variable
* warnings with useless harmless statement.</li>
* </ul>
* </li>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Added <code>bw_ls2_reset_state_multi()</code> and updated C++
* API in this regard.</li>
* <li>Now <code>bw_ls2_reset_state()</code> returns the initial output
* value.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li>Added prewarp_at_cutoff and prewarp_freq parameters.</li>
* <li><code>bw_ls2_process()</code> and
* <code>bw_ls2_process_multi()</code> now use <code>size_t</code>
* to count samples and channels.</li>
* <li>Added more <code>const</code> and <code>BW_RESTRICT</code>
* specifiers to input arguments and implementation.</li>
* <li>Moved C++ code to C header.</li>
* <li>Added overloaded C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Added pragmas to silence bogus GCC uninitialized variable
* warnings.</li>
* <li>Fixed documentation to indicate correct default parameter
* values.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
* <ul>
* <li>Removed dependency on bw_config.</li>
* </ul>
* </li>
* <li>Version <strong>0.5.0</strong>:
* <ul>
* <li>Added <code>bw_ls2_process_multi()</code>.</li>
* <li>Added C++ wrapper.</li>
* </ul>
* </li>
* <li>Version <strong>0.4.0</strong>:
* <ul>
* <li>Added initial input value to
* <code>bw_ls2_reset_state()</code>.</li>
* </ul>
* </li>
* <li>Version <strong>0.3.0</strong>:
* <ul>
* <li>First release.</li>
* </ul>
* </li>
* </ul>
* }}}
*/
#ifndef BW_LS2_H
#define BW_LS2_H
#include <bw_common.h>
#ifdef __cplusplus
extern "C" {
#endif
/*! api {{{
* #### bw_ls2_coeffs
* ```>>> */
typedef struct bw_ls2_coeffs bw_ls2_coeffs;
/*! <<<```
* Coefficients and related.
*
* #### bw_ls2_state
* ```>>> */
typedef struct bw_ls2_state bw_ls2_state;
/*! <<<```
* Internal state and related.
*
* #### bw_ls2_init()
* ```>>> */
static inline void bw_ls2_init(
bw_ls2_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_ls2_set_sample_rate()
* ```>>> */
static inline void bw_ls2_set_sample_rate(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_ls2_reset_coeffs()
* ```>>> */
static inline void bw_ls2_reset_coeffs(
bw_ls2_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_ls2_reset_state()
* ```>>> */
static inline float bw_ls2_reset_state(
const bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT state,
float x_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the initial input value `x_0`.
*
* Returns the corresponding initial output value.
*
* #### bw_ls2_reset_state_multi()
* ```>>> */
static inline void bw_ls2_reset_state_multi(
const bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding initial input value in the `x_0`
* array.
*
* The corresponding initial output values are written into the `y_0` array,
* if not `BW_NULL`.
*
* #### bw_ls2_update_coeffs_ctrl()
* ```>>> */
static inline void bw_ls2_update_coeffs_ctrl(
bw_ls2_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_ls2_update_coeffs_audio()
* ```>>> */
static inline void bw_ls2_update_coeffs_audio(
bw_ls2_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_ls2_process1()
* ```>>> */
static inline float bw_ls2_process1(
const bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT state,
float x);
/*! <<<```
* Processes one input sample `x` using `coeffs`, while using and updating
* `state`. Returns the corresponding output sample.
*
* #### bw_ls2_process()
* ```>>> */
static inline void bw_ls2_process(
bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffer `y`, while using and updating both
* `coeffs` and `state` (control and audio rate).
*
* #### bw_ls2_process_multi()
* ```>>> */
static inline void bw_ls2_process_multi(
bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
* using and updating both the common `coeffs` and each of the `n_channels`
* `state`s (control and audio rate).
*
* #### bw_ls2_set_cutoff()
* ```>>> */
static inline void bw_ls2_set_cutoff(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the cutoff frequency `value` (Hz) in `coeffs`.
*
* `value` must be finite and positive.
*
* By the time `bw_ls2_reset_coeffs()`, `bw_ls2_update_coeffs_ctrl()`,
* `bw_ls2_update_coeffs_audio()`, `bw_ls2_process1()`, `bw_ls2_process()`,
* or `bw_ls2_process_multi()` is called,
* `cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(dc_gain)))` must be in [`1e-6f`,
* `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_ls2_set_Q()
* ```>>> */
static inline void bw_ls2_set_Q(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the quality factor to the given `value` in `coeffs`.
*
* Valid range: [`1e-6f`, `1e6f`].
*
* Default value: `0.5f`.
*
* #### bw_ls2_set_prewarp_at_cutoff()
* ```>>> */
static inline void bw_ls2_set_prewarp_at_cutoff(
bw_ls2_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether bilinear transform prewarping frequency should match the
* cutoff frequency (non-`0`) or not (`0`).
*
* Default value: non-`0` (on).
*
* #### bw_ls2_set_prewarp_freq()
* ```>>> */
static inline void bw_ls2_set_prewarp_freq(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the prewarping frequency `value` (Hz) in `coeffs`.
*
* Only used when the prewarp\_at\_cutoff parameter is off and however
* internally limited to avoid instability.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_ls2_set_dc_gain_lin()
* ```>>> */
static inline void bw_ls2_set_dc_gain_lin(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the dc gain parameter to the given `value` (linear gain) in `coeffs`.
*
* Valid range: [`1e-30f`, `1e30f`].
*
* By the time `bw_ls2_reset_coeffs()`, `bw_ls2_update_coeffs_ctrl()`,
* `bw_ls2_update_coeffs_audio()`, `bw_ls2_process1()`, `bw_ls2_process()`,
* or `bw_ls2_process_multi()` is called,
* `cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(dc_gain)))` must be in [`1e-6f`,
* `1e12f`].
*
* Default value: `1.f`.
*
* #### bw_ls2_set_dc_gain_dB()
* ```>>> */
static inline void bw_ls2_set_dc_gain_dB(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the dc gain parameter to the given `value` (dB) in `coeffs`.
*
* Valid range: [`-600.f`, `600.f`].
*
* By the time `bw_ls2_reset_coeffs()`, `bw_ls2_update_coeffs_ctrl()`,
* `bw_ls2_update_coeffs_audio()`, `bw_ls2_process1()`, `bw_ls2_process()`,
* or `bw_ls2_process_multi()` is called,
* `cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(dc_gain)))` must be in [`1e-6f`,
* `1e12f`].
*
* Default value: `0.f`.
*
* #### bw_ls2_coeffs_is_valid()
* ```>>> */
static inline char bw_ls2_coeffs_is_valid(
const bw_ls2_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_ls2_coeffs`.
*
* #### bw_ls2_state_is_valid()
* ```>>> */
static inline char bw_ls2_state_is_valid(
const bw_ls2_coeffs * BW_RESTRICT coeffs,
const bw_ls2_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `BW_NULL` extra cross-checks might be performed
* (`state` is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_ls2_state`.
* }}} */
#ifdef __cplusplus
}
#endif
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
#include <bw_mm2.h>
#include <bw_math.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_ls2_coeffs_state {
bw_ls2_coeffs_state_invalid,
bw_ls2_coeffs_state_init,
bw_ls2_coeffs_state_set_sample_rate,
bw_ls2_coeffs_state_reset_coeffs
};
#endif
struct bw_ls2_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_ls2_coeffs_state state;
uint32_t reset_id;
#endif
// Sub-components
bw_mm2_coeffs mm2_coeffs;
// Coefficients
float sg;
float issg;
// Parameters
float cutoff;
float prewarp_k;
float prewarp_freq;
float dc_gain;
int param_changed;
};
struct bw_ls2_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
// Sub-components
bw_mm2_state mm2_state;
};
#define BW_LS2_PARAM_CUTOFF 1
#define BW_LS2_PARAM_DC_GAIN (1<<1)
static inline void bw_ls2_init(
bw_ls2_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
bw_mm2_init(&coeffs->mm2_coeffs);
bw_mm2_set_prewarp_at_cutoff(&coeffs->mm2_coeffs, 0);
coeffs->cutoff = 1e3f;
coeffs->prewarp_k = 1.f;
coeffs->prewarp_freq = 1.f;
coeffs->dc_gain = 1.f;
coeffs->param_changed = ~0;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_ls2_coeffs");
coeffs->state = bw_ls2_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_ls2_coeffs_state_init);
}
static inline void bw_ls2_set_sample_rate(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
bw_mm2_set_sample_rate(&coeffs->mm2_coeffs, sample_rate);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_ls2_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_ls2_coeffs_state_set_sample_rate);
}
static inline void bw_ls2_update_mm2_params(
bw_ls2_coeffs * BW_RESTRICT coeffs) {
bw_mm2_set_prewarp_freq(&coeffs->mm2_coeffs, coeffs->prewarp_freq + coeffs->prewarp_k * (coeffs->cutoff - coeffs->prewarp_freq));
if (coeffs->param_changed) {
if (coeffs->param_changed & BW_LS2_PARAM_DC_GAIN) {
coeffs->sg = bw_sqrtf(coeffs->dc_gain);
coeffs->issg = bw_rcpf(bw_sqrtf(coeffs->sg));
bw_mm2_set_coeff_x(&coeffs->mm2_coeffs, coeffs->sg);
bw_mm2_set_coeff_lp(&coeffs->mm2_coeffs, coeffs->dc_gain - coeffs->sg);
bw_mm2_set_coeff_hp(&coeffs->mm2_coeffs, 1.f - coeffs->sg);
}
bw_mm2_set_cutoff(&coeffs->mm2_coeffs, coeffs->cutoff * coeffs->issg);
coeffs->param_changed = 0;
}
}
static inline void bw_ls2_reset_coeffs(
bw_ls2_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_set_sample_rate);
BW_ASSERT_DEEP(coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) >= 1e-6f && coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) <= 1e12f);
coeffs->param_changed = ~0;
bw_ls2_update_mm2_params(coeffs);
bw_mm2_reset_coeffs(&coeffs->mm2_coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_ls2_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_ls2_coeffs_state_reset_coeffs);
}
static inline float bw_ls2_reset_state(
const bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT state,
float x_0) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT(bw_is_finite(x_0));
const float y = bw_mm2_reset_state(&coeffs->mm2_coeffs, &state->mm2_state, x_0);
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_ls2_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_ls2_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_ls2_reset_state_multi(
const bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x_0 != BW_NULL);
if (y_0 != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
y_0[i] = bw_ls2_reset_state(coeffs, state[i], x_0[i]);
else
for (size_t i = 0; i < n_channels; i++)
bw_ls2_reset_state(coeffs, state[i], x_0[i]);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1);
}
static inline void bw_ls2_update_coeffs_ctrl(
bw_ls2_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) >= 1e-6f && coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) <= 1e12f);
bw_ls2_update_mm2_params(coeffs);
bw_mm2_update_coeffs_ctrl(&coeffs->mm2_coeffs);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
}
static inline void bw_ls2_update_coeffs_audio(
bw_ls2_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) >= 1e-6f && coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) <= 1e12f);
bw_mm2_update_coeffs_audio(&coeffs->mm2_coeffs);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
}
static inline float bw_ls2_process1(
const bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) >= 1e-6f && coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) <= 1e12f);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
const float y = bw_mm2_process1(&coeffs->mm2_coeffs, &state->mm2_state, x);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_ls2_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_ls2_process(
bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) >= 1e-6f && coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) <= 1e12f);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_state_is_valid(coeffs, state));
BW_ASSERT(x != BW_NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
BW_ASSERT(y != BW_NULL);
bw_ls2_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++) {
bw_ls2_update_coeffs_audio(coeffs);
y[i] = bw_ls2_process1(coeffs, state, x[i]);
}
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_ls2_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples));
}
static inline void bw_ls2_process_multi(
bw_ls2_coeffs * BW_RESTRICT coeffs,
bw_ls2_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) >= 1e-6f && coeffs->cutoff * bw_rcpf(bw_sqrtf(bw_sqrtf(coeffs->dc_gain))) <= 1e12f);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x != BW_NULL);
BW_ASSERT(y != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(y[i] != y[j]);
#endif
bw_ls2_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++) {
bw_ls2_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++)
y[j][i] = bw_ls2_process1(coeffs, state[j], x[j][i]);
}
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_reset_coeffs);
}
static inline void bw_ls2_set_cutoff(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value > 0.f);
if (coeffs->cutoff != value) {
coeffs->cutoff = value;
coeffs->param_changed |= BW_LS2_PARAM_CUTOFF;
}
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
}
static inline void bw_ls2_set_Q(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e6f);
bw_mm2_set_Q(&coeffs->mm2_coeffs, value);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
}
static inline void bw_ls2_set_prewarp_at_cutoff(
bw_ls2_coeffs * BW_RESTRICT coeffs,
char value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
bw_mm2_set_prewarp_at_cutoff(&coeffs->mm2_coeffs, value);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
}
static inline void bw_ls2_set_prewarp_freq(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
coeffs->prewarp_freq = value;
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
}
static inline void bw_ls2_set_dc_gain_lin(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-30f && value <= 1e30f);
if (coeffs->dc_gain != value) {
coeffs->dc_gain = value;
coeffs->param_changed |= BW_LS2_PARAM_DC_GAIN;
}
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
}
static inline void bw_ls2_set_dc_gain_dB(
bw_ls2_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= -600.f && value <= 600.f);
bw_ls2_set_dc_gain_lin(coeffs, bw_dB2linf(value));
BW_ASSERT_DEEP(bw_ls2_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_ls2_coeffs_state_init);
}
static inline char bw_ls2_coeffs_is_valid(
const bw_ls2_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_ls2_coeffs"))
return 0;
if (coeffs->state < bw_ls2_coeffs_state_init || coeffs->state > bw_ls2_coeffs_state_reset_coeffs)
return 0;
#endif
if (!bw_is_finite(coeffs->cutoff) || coeffs->cutoff <= 0.f)
return 0;
if (!bw_is_finite(coeffs->prewarp_k) || (coeffs->prewarp_k != 0.f && coeffs->prewarp_k != 1.f))
return 0;
if (!bw_is_finite(coeffs->prewarp_freq) || coeffs->prewarp_freq < 1e-6f || coeffs->prewarp_freq > 1e12f)
return 0;
if (!bw_is_finite(coeffs->dc_gain) || coeffs->dc_gain < 1e-30f || coeffs->dc_gain > 1e30f)
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_ls2_coeffs_state_reset_coeffs) {
if (!bw_is_finite(coeffs->sg) || coeffs->sg < 0.f)
return 0;
if (!bw_is_finite(coeffs->issg) || coeffs->issg < 0.f)
return 0;
}
#endif
return bw_mm2_coeffs_is_valid(&coeffs->mm2_coeffs);
}
static inline char bw_ls2_state_is_valid(
const bw_ls2_coeffs * BW_RESTRICT coeffs,
const bw_ls2_state * BW_RESTRICT state) {
BW_ASSERT(state != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_ls2_state"))
return 0;
if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
return bw_mm2_state_is_valid(coeffs ? &coeffs->mm2_coeffs : BW_NULL, &state->mm2_state);
}
#undef BW_LS2_PARAM_CUTOFF
#undef BW_LS2_PARAM_DC_GAIN
#ifdef __cplusplus
}
#include <array>
namespace Brickworks {
/*** Public C++ API ***/
/*! api_cpp {{{
* ##### Brickworks::LS2
* ```>>> */
template<size_t N_CHANNELS>
class LS2 {
public:
LS2();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
float * const * y,
size_t nSamples);
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
void setCutoff(
float value);
void setQ(
float value);
void setPrewarpAtCutoff(
bool value);
void setPrewarpFreq(
float value);
void setDcGainLin(
float value);
void setDcGainDB(
float value);
/*! <<<...
* }
* ```
* }}} */
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
private:
bw_ls2_coeffs coeffs;
bw_ls2_state states[N_CHANNELS];
bw_ls2_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
inline LS2<N_CHANNELS>::LS2() {
bw_ls2_init(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
statesP[i] = states + i;
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_ls2_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT y0) {
bw_ls2_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
y0[i] = bw_ls2_reset_state(&coeffs, states + i, x0);
else
for (size_t i = 0; i < N_CHANNELS; i++)
bw_ls2_reset_state(&coeffs, states + i, x0);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : y0);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::reset(
const float * x0,
float * y0) {
bw_ls2_reset_coeffs(&coeffs);
bw_ls2_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::process(
const float * const * x,
float * const * y,
size_t nSamples) {
bw_ls2_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
process(x.data(), y.data(), nSamples);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::setCutoff(
float value) {
bw_ls2_set_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::setQ(
float value) {
bw_ls2_set_Q(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::setPrewarpAtCutoff(
bool value) {
bw_ls2_set_prewarp_at_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::setPrewarpFreq(
float value) {
bw_ls2_set_prewarp_freq(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::setDcGainLin(
float value) {
bw_ls2_set_dc_gain_lin(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void LS2<N_CHANNELS>::setDcGainDB(
float value) {
bw_ls2_set_dc_gain_dB(&coeffs, value);
}
}
#endif
#endif