brickworks/include/bw_peak.h

1046 lines
33 KiB
C++

/*
* Brickworks
*
* Copyright (C) 2023 Orastron Srl unipersonale
*
* Brickworks is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* Brickworks is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Brickworks. If not, see <http://www.gnu.org/licenses/>.
*
* File author: Stefano D'Angelo
*/
/*!
* module_type {{{ dsp }}}
* version {{{ 1.0.0 }}}
* requires {{{ bw_common bw_gain bw_math bw_mm2 bw_one_pole bw_svf }}}
* description {{{
* Second-order peak filter with unitary gain at DC and asymptotically
* as frequency increases.
*
* The quality factor of the underlying bandpass filter can be either
* directly controlled via the Q parameter or indirectly through the
* bandwidth parameter, which designates the distance in octaves between
* midpoint gain frequencies, i.e., frequencies with gain = peak gain / 2 in
* dB terms. The use_bandiwdth parameter allows you to choose which
* parameterization to use.
* }}}
* changelog {{{
* <ul>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Added <code>bw_peak_reset_state_multi()</code> and updated C++
* API in this regard.</li>
* <li>Now <code>bw_peak_reset_state()</code> returns the initial
* output value.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li><code>bw_peak_process()</code> and
* <code>bw_peak_process_multi()</code> now use <code>size_t</code>
* to count samples and channels.</li>
* <li>Added more <code>const</code> and <code>BW_RESTRICT</code>
* specifiers to input arguments and implementation.</li>
* <li>Moved C++ code to C header.</li>
* <li>Added overloaded C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Added pragmas to silence bogus GCC uninitialized variable
* warnings.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
* <ul>
* <li>Removed dependency on bw_config.</li>
* </ul>
* </li>
* <li>Version <strong>0.5.0</strong>:
* <ul>
* <li>Added <code>bw_peak_process_multi()</code>.</li>
* <li>Fixed documentation for <code>bw_peak_set_peak_gain_lin()</code>
* and <code>bw_peak_set_gain_dB()</code>.</li>
* <li>Added C++ wrapper.</li>
* </ul>
* </li>
* <li>Version <strong>0.4.0</strong>:
* <ul>
* <li>Added initial input value to
* <code>bw_peak_reset_state()</code>.</li>
* </ul>
* </li>
* <li>Version <strong>0.3.0</strong>:
* <ul>
* <li>First release.</li>
* </ul>
* </li>
* </ul>
* }}}
*/
#ifndef BW_PEAK_H
#define BW_PEAK_H
#include <bw_common.h>
#ifdef __cplusplus
extern "C" {
#endif
/*! api {{{
* #### bw_peak_coeffs
* ```>>> */
typedef struct bw_peak_coeffs bw_peak_coeffs;
/*! <<<```
* Coefficients and related.
*
* #### bw_peak_state
* ```>>> */
typedef struct bw_peak_state bw_peak_state;
/*! <<<```
* Internal state and related.
*
* #### bw_peak_init()
* ```>>> */
static inline void bw_peak_init(
bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_peak_set_sample_rate()
* ```>>> */
static inline void bw_peak_set_sample_rate(
bw_peak_coeffs *BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_peak_reset_coeffs()
* ```>>> */
static inline void bw_peak_reset_coeffs(
bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_peak_reset_state()
* ```>>> */
static inline float bw_peak_reset_state(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
float x_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the initial input value `x_0`.
*
* Returns the corresponding initial output value.
*
* #### bw_peak_reset_state_multi()
* ```>>> */
static inline void bw_peak_reset_state_multi(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding initial input value in the `x_0`
* array.
*
* The corresponding initial output values are written into the `y_0` array,
* if not `NULL`.
*
* #### bw_peak_update_coeffs_ctrl()
* ```>>> */
static inline void bw_peak_update_coeffs_ctrl(
bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_peak_update_coeffs_audio()
* ```>>> */
static inline void bw_peak_update_coeffs_audio(
bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_peak_process1()
* ```>>> */
static inline float bw_peak_process1(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
float x);
/*! <<<```
* Processes one input sample `x` using `coeffs`, while using and updating
* `state`. Returns the corresponding output sample.
*
* #### bw_peak_process()
* ```>>> */
static inline void bw_peak_process(
bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffer `y`, while using and updating both
* `coeffs` and `state` (control and audio rate).
*
* #### bw_peak_process_multi()
* ```>>> */
static inline void bw_peak_process_multi(
bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
* using and updating both the common `coeffs` and each of the `n_channels`
* `state`s (control and audio rate).
*
* #### bw_peak_set_cutoff()
* ```>>> */
static inline void bw_peak_set_cutoff(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the cutoff frequency `value` (Hz) in `coeffs`.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_peak_set_Q()
* ```>>> */
static inline void bw_peak_set_Q(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the quality factor to the given `value` in `coeffs`.
*
* Valid range: [`1e-6f`, `1e6f`].
*
* Default value: `0.5f`.
*
* #### bw_peak_set_prewarp_at_cutoff()
* ```>>> */
static inline void bw_peak_set_prewarp_at_cutoff(
bw_peak_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether bilinear transform prewarping frequency should match the
* cutoff frequency (non-`0`) or not (`0`).
*
* Default value: non-`0` (on).
*
* #### bw_peak_set_prewarp_freq()
* ```>>> */
static inline void bw_peak_set_prewarp_freq(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the prewarping frequency `value` (Hz) in `coeffs`.
*
* Only used when the prewarp\_at\_cutoff parameter is off and however
* internally limited to avoid instability.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_peak_set_peak_gain_lin()
* ```>>> */
static inline void bw_peak_set_peak_gain_lin(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the peak gain parameter to the given `value` (linear gain) in
* `coeffs`.
*
* Valid range: [`1e-30f`, `1e30f`].
*
* If actually using the bandwidth parameter to control Q, by the time
* `bw_peak_update_coeffs_ctrl()`, `bw_peak_update_coeffs_audio()`,
* `bw_peak_process1()`, `bw_peak_process()`, or `bw_peak_process_multi()` is
* called, `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain) *
* bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`].
*
* Default value: `1.f`.
*
* #### bw_peak_set_peak_gain_dB()
* ```>>> */
static inline void bw_peak_set_peak_gain_dB(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the peak gain parameter to the given `value` (dB) in `coeffs`.
*
* Valid range: [`-600.f`, `600.f`].
*
* If actually using the bandwidth parameter to control Q, by the time
* `bw_peak_update_coeffs_ctrl()`, `bw_peak_update_coeffs_audio()`,
* `bw_peak_process1()`, `bw_peak_process()`, or `bw_peak_process_multi()` is
* called, `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain) *
* bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`].
*
* Default value: `0.f`.
*
* #### bw_peak_set_bandiwdth()
* ```>>> */
static inline void bw_peak_set_bandwidth(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the bandwidth `value` (octaves) in `coeffs`.
*
* Valid range: [`1e-6f`, `90.f`].
*
* If actually using the bandwidth parameter to control Q, by the time
* `bw_peak_update_coeffs_ctrl()`, `bw_peak_update_coeffs_audio()`,
* `bw_peak_process1()`, `bw_peak_process()`, or `bw_peak_process_multi()` is
* called, `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain) *
* bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`].
*
* Default value: `2.543106606327224f`.
*
* #### bw_peak_set_use_bandwidth()
* ```>>> */
static inline void bw_peak_set_use_bandwidth(
bw_peak_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether the quality factor should be controlled via the bandwidth
* parameter (`value` non-`0`) or via the Q parameter (`0`).
*
* Default value: non-`0` (use bandwidth parameter).
*
* #### bw_peak_coeffs_is_valid()
* ```>>> */
static inline char bw_peak_coeffs_is_valid(
const bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_peak_coeffs`.
*
* #### bw_peak_state_is_valid()
* ```>>> */
static inline char bw_peak_state_is_valid(
const bw_peak_coeffs * BW_RESTRICT coeffs,
const bw_peak_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `NULL` extra cross-checks might be performed (`state`
* is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_peak_state`.
* }}} */
#ifdef __cplusplus
}
#endif
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
#include <bw_mm2.h>
#include <bw_math.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_peak_coeffs_state {
bw_peak_coeffs_state_invalid,
bw_peak_coeffs_state_init,
bw_peak_coeffs_state_set_sample_rate,
bw_peak_coeffs_state_reset_coeffs
};
#endif
struct bw_peak_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_peak_coeffs_state state;
uint32_t reset_id;
#endif
// Sub-components
bw_mm2_coeffs mm2_coeffs;
// Coefficients
float bw_k;
// Parameters
float Q;
float peak_gain;
float bandwidth;
char use_bandwidth;
int param_changed;
};
struct bw_peak_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
// Sub-components
bw_mm2_state mm2_state;
};
#define BW_PEAK_PARAM_Q 1
#define BW_PEAK_PARAM_PEAK_GAIN (1<<1)
#define BW_PEAK_PARAM_BANDWIDTH (1<<2)
static inline void bw_peak_init(
bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
bw_mm2_init(&coeffs->mm2_coeffs);
coeffs->Q = 0.5f;
coeffs->peak_gain = 1.f;
coeffs->bandwidth = 2.543106606327224f;
coeffs->use_bandwidth = 1;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_peak_coeffs");
coeffs->state = bw_peak_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_sample_rate(
bw_peak_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
bw_mm2_set_sample_rate(&coeffs->mm2_coeffs, sample_rate);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_peak_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_set_sample_rate);
}
static inline void bw_peak_update_mm2_params(
bw_peak_coeffs * BW_RESTRICT coeffs) {
if (coeffs->param_changed) {
if (coeffs->use_bandwidth) {
if (coeffs->param_changed & (BW_PEAK_PARAM_PEAK_GAIN | BW_PEAK_PARAM_BANDWIDTH)) {
if (coeffs->param_changed & BW_PEAK_PARAM_BANDWIDTH)
coeffs->bw_k = bw_pow2f(coeffs->bandwidth);
const float Q = bw_sqrtf(coeffs->bw_k * coeffs->peak_gain) * bw_rcpf(coeffs->bw_k - 1.f);
bw_mm2_set_Q(&coeffs->mm2_coeffs, Q);
bw_mm2_set_coeff_bp(&coeffs->mm2_coeffs, (coeffs->peak_gain - 1.f) * bw_rcpf(Q));
}
} else {
if (coeffs->param_changed & (BW_PEAK_PARAM_PEAK_GAIN | BW_PEAK_PARAM_Q)) {
if (coeffs->param_changed & BW_PEAK_PARAM_Q)
bw_mm2_set_Q(&coeffs->mm2_coeffs, coeffs->Q);
bw_mm2_set_coeff_bp(&coeffs->mm2_coeffs, (coeffs->peak_gain - 1.f) * bw_rcpf(coeffs->Q));
}
}
coeffs->param_changed = 0;
}
}
static inline void bw_peak_reset_coeffs(
bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_set_sample_rate);
coeffs->param_changed = ~0;
bw_peak_update_mm2_params(coeffs);
bw_mm2_reset_coeffs(&coeffs->mm2_coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_peak_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_reset_coeffs);
}
static inline float bw_peak_reset_state(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
float x_0) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(bw_is_finite(x_0));
const float y = bw_mm2_reset_state(&coeffs->mm2_coeffs, &state->mm2_state, x_0);
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_peak_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_peak_reset_state_multi(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(x_0 != NULL);
if (y_0 != NULL)
for (size_t i = 0; i < n_channels; i++)
y_0[i] = bw_peak_reset_state(coeffs, state[i], x_0[i]);
else
for (size_t i = 0; i < n_channels; i++)
bw_peak_reset_state(coeffs, state[i], x_0[i]);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != NULL ? bw_has_only_finite(y_0, n_channels) : 1);
}
static inline void bw_peak_update_coeffs_ctrl(
bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
bw_peak_update_mm2_params(coeffs);
bw_mm2_update_coeffs_ctrl(&coeffs->mm2_coeffs);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
}
static inline void bw_peak_update_coeffs_audio(
bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
bw_mm2_update_coeffs_audio(&coeffs->mm2_coeffs);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
}
static inline float bw_peak_process1(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
const float y = bw_mm2_process1(&coeffs->mm2_coeffs, &state->mm2_state, x);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_peak_process(
bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT(x != NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
BW_ASSERT(y != NULL);
bw_peak_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++) {
bw_peak_update_coeffs_audio(coeffs);
y[i] = bw_peak_process1(coeffs, state, x[i]);
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples));
}
static inline void bw_peak_process_multi(
bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
BW_ASSERT(state != NULL);
BW_ASSERT(x != NULL);
BW_ASSERT(y != NULL);
bw_peak_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++) {
bw_peak_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++)
y[j][i] = bw_peak_process1(coeffs, state[j], x[j][i]);
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
}
static inline void bw_peak_set_cutoff(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
bw_mm2_set_cutoff(&coeffs->mm2_coeffs, value);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_Q(bw_peak_coeffs *BW_RESTRICT coeffs, float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e6f);
if (coeffs->Q != value) {
coeffs->Q = value;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
coeffs->param_changed |= BW_PEAK_PARAM_Q;
#pragma GCC diagnostic pop
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_prewarp_at_cutoff(
bw_peak_coeffs * BW_RESTRICT coeffs,
char value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
bw_mm2_set_prewarp_at_cutoff(&coeffs->mm2_coeffs, value);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_prewarp_freq(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
bw_mm2_set_prewarp_freq(&coeffs->mm2_coeffs, value);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_peak_gain_lin(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-30f && value <= 1e30f);
if (coeffs->peak_gain != value) {
coeffs->peak_gain = value;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
coeffs->param_changed |= BW_PEAK_PARAM_PEAK_GAIN;
#pragma GCC diagnostic pop
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_peak_gain_dB(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= -600.f && value <= 600.f);
bw_peak_set_peak_gain_lin(coeffs, bw_dB2linf(value));
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_bandwidth(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 90.f);
if (coeffs->bandwidth != value) {
coeffs->bandwidth = value;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
coeffs->param_changed |= BW_PEAK_PARAM_BANDWIDTH;
#pragma GCC diagnostic pop
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_use_bandwidth(bw_peak_coeffs *BW_RESTRICT coeffs, char value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
if ((coeffs->use_bandwidth && !value) || (!coeffs->use_bandwidth && value)) {
coeffs->use_bandwidth = value;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
coeffs->param_changed |= BW_PEAK_PARAM_Q | BW_PEAK_PARAM_BANDWIDTH;
#pragma GCC diagnostic pop
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline char bw_peak_coeffs_is_valid(
const bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_peak_coeffs"))
return 0;
if (coeffs->state < bw_peak_coeffs_state_init || coeffs->state > bw_peak_coeffs_state_reset_coeffs)
return 0;
#endif
if (!bw_is_finite(coeffs->Q) || coeffs->Q < 1e-6f || coeffs->Q > 1e6f)
return 0;
if (!bw_is_finite(coeffs->peak_gain) || coeffs->peak_gain < 1e-30f || coeffs->peak_gain > 1e30f)
return 0;
if (!bw_is_finite(coeffs->bandwidth) || coeffs->bandwidth < 1e-6f || coeffs->bandwidth > 90.f)
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_peak_coeffs_state_reset_coeffs) {
if (!bw_is_finite(coeffs->bw_k) || coeffs->bw_k <= 0.f)
return 0;
}
#endif
return bw_mm2_coeffs_is_valid(&coeffs->mm2_coeffs);
}
static inline char bw_peak_state_is_valid(
const bw_peak_coeffs * BW_RESTRICT coeffs,
const bw_peak_state * BW_RESTRICT state) {
BW_ASSERT(state != NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_peak_state"))
return 0;
if (coeffs != NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
return bw_mm2_state_is_valid(coeffs ? &coeffs->mm2_coeffs : NULL, &state->mm2_state);
}
#undef BW_PEAK_PARAM_Q
#undef BW_PEAK_PARAM_PEAK_GAIN
#undef BW_PEAK_PARAM_BANDWIDTH
#ifdef __cplusplus
}
#include <array>
namespace Brickworks {
/*** Public C++ API ***/
/*! api_cpp {{{
* ##### Brickworks::Peak
* ```>>> */
template<size_t N_CHANNELS>
class Peak {
public:
Peak();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
float * const * y,
size_t nSamples);
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
void setCutoff(
float value);
void setQ(
float value);
void setPrewarpAtCutoff(
bool value);
void setPrewarpFreq(
float value);
void setPeakGainLin(
float value);
void setPeakGainDB(
float value);
void setBandwidth(
float value);
void setUseBandwidth(
bool value);
/*! <<<...
* }
* ```
* }}} */
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
private:
bw_peak_coeffs coeffs;
bw_peak_state states[N_CHANNELS];
bw_peak_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
inline Peak<N_CHANNELS>::Peak() {
bw_peak_init(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
statesP[i] = states + i;
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_peak_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT y0) {
bw_peak_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
y0[i] = bw_peak_reset_state(&coeffs, states + i, x0);
else
for (size_t i = 0; i < N_CHANNELS; i++)
bw_peak_reset_state(&coeffs, states + i, x0);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : y0);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::reset(
const float * x0,
float * y0) {
bw_peak_reset_coeffs(&coeffs);
bw_peak_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::process(
const float * const * x,
float * const * y,
size_t nSamples) {
bw_peak_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
process(x.data(), y.data(), nSamples);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setCutoff(
float value) {
bw_peak_set_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setQ(
float value) {
bw_peak_set_Q(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setPrewarpAtCutoff(
bool value) {
bw_peak_set_prewarp_at_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setPrewarpFreq(
float value) {
bw_peak_set_prewarp_freq(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setPeakGainLin(
float value) {
bw_peak_set_peak_gain_lin(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setPeakGainDB(
float value) {
bw_peak_set_peak_gain_dB(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setBandwidth(
float value) {
bw_peak_set_bandwidth(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setUseBandwidth(
bool value) {
bw_peak_set_use_bandwidth(&coeffs, value);
}
}
#endif
#endif