/* * Brickworks * * Copyright (C) 2023 Orastron Srl unipersonale * * Brickworks is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3 of the License. * * Brickworks is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Brickworks. If not, see . * * File author: Stefano D'Angelo */ /*! * module_type {{{ dsp }}} * version {{{ 0.5.0 }}} * requires {{{ bw_common bw_config bw_math }}} * description {{{ * Aribtrary-ratio IIR sample rate converter. * }}} * changelog {{{ * * }}} */ #ifndef _BW_SRC_H #define _BW_SRC_H #ifdef __cplusplus extern "C" { #endif #include /*! api {{{ * #### bw_src_coeffs * ```>>> */ typedef struct _bw_src_coeffs bw_src_coeffs; /*! <<<``` * Coefficients and related. * * #### bw_src_state * ```>>> */ typedef struct _bw_src_state bw_src_state; /*! <<<``` * Internal state and related. * * #### bw_src_init() * ```>>> */ static inline void bw_src_init(bw_src_coeffs *BW_RESTRICT coeffs, float ratio); /*! <<<``` * Initializes `coeffs` using the given resampling `ratio`. * * `ratio` must be positive and determines the sample rate of the output * signal, which will be equal to `ratio` times the sample rate of the input * signal. * * #### bw_src_reset_state() * ```>>> */ static inline void bw_src_reset_state(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state *BW_RESTRICT state, float x0); /*! <<<``` * Resets the given `state` to its initial values using the given `coeffs` * and the quiescent/initial input value `x0`. * * #### bw_src_process() * ```>>> */ static inline void bw_src_process(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state *BW_RESTRICT state, const float *x, float *y, int *n_in_samples, int *n_out_samples); /*! <<<``` * Processes at most the first `n_in_samples` of the input buffer `x` and * fills the output buffer `y` with at most `n_out_samples` using `coeffs`, * while using and updating `state`. * * After the call `n_in_samples` and `n_out_samples` will contain the actual * number of consumed input samples and generated output samples, * respectively. * * #### bw_src_process_multi() * ```>>> */ static inline void bw_src_process_multi(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state **BW_RESTRICT state, const float **x, float **y, int n_channels, int **n_in_samples, int **n_out_samples); /*! <<<``` * Processes at most the first `n_in_samples[i]` of each input buffer `x[i]` * and fills the corresponding output buffer `y[i]` with at most * `n_out_samples[i]` using `coeffs`, while using and updating each * `state[i]`. * * After the call each element in `n_in_samples` and `n_out_samples` will * contain the actual number of consumed input samples and generated output * samples, respectively, for each of the `n_channels` input/output buffer * couples. * }}} */ /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ #include struct _bw_src_coeffs { float k; float a1; float a2; float a3; float a4; float b0; float b1; float b2; }; struct _bw_src_state { float i; float z1; float z2; float z3; float z4; float xz1; float xz2; float xz3; }; static inline void bw_src_init(bw_src_coeffs *BW_RESTRICT coeffs, float ratio) { coeffs->k = ratio >= 1.f ? 1.f / ratio : -1.f / ratio; // 4th-degree Butterworth with cutoff at ratio * Nyquist, using bilinear transform w/ prewarping const float fc = bw_minf(ratio >= 1.f ? 1.f / ratio : ratio, 0.9f); const float T = bw_tanf_3(1.570796326794896f * fc); const float T2 = T * T; const float k = 1.f / (T * (T * (T * (T + 2.613125929752753f) + 3.414213562373095f) + 2.613125929752753f) + 1.f); coeffs->b0 = k * T2 * T2; coeffs->b1 = 4.f * coeffs->b0; coeffs->b2 = 6.f * coeffs->b0; coeffs->a1 = k * (T * (T2 * (4.f * T + 5.226251859505504f) - 5.226251859505504f) - 4.f); coeffs->a2 = k * (T2 * (6.f * T2 - 6.82842712474619f) + 6.f); coeffs->a3 = k * (T * (T2 * (4.f * T - 5.226251859505504f) + 5.226251859505504f) - 4.f); coeffs->a4 = k * (T * (T * (T * (T - 2.613125929752753f) + 3.414213562373095f) - 2.613125929752753f) + 1.f); } static inline void bw_src_reset_state(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state *BW_RESTRICT state, float x0) { if (coeffs->k < 0) { // DF-II state->z1 = x0 / (1.f + coeffs->a1 + coeffs->a2 + coeffs->a3 + coeffs->a4); state->z2 = state->z1; state->z3 = state->z2; state->z4 = state->z3; } else { // TDF-II state->z4 = (coeffs->b0 - coeffs->a4) * x0; state->z3 = (coeffs->b1 - coeffs->a3) * x0 + state->z4; state->z2 = (coeffs->b2 - coeffs->a2) * x0 + state->z3; state->z1 = (coeffs->b1 - coeffs->a1) * x0 + state->z2; } state->i = 0.f; state->xz1 = x0; state->xz2 = x0; state->xz3 = x0; } static inline void bw_src_process(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state *BW_RESTRICT state, const float *x, float *y, int *n_in_samples, int *n_out_samples) { int i = 0; int j = 0; if (coeffs->k < 0) { while (i < *n_in_samples && j < *n_out_samples) { // DF-II const float z0 = x[i] - coeffs->a1 * state->z1 - coeffs->a2 * state->z2 - coeffs->a3 * state->z3 - coeffs->a4 * state->z4; const float o = coeffs->b0 * (z0 + state->z4) + coeffs->b1 * (state->z1 + state->z3) + coeffs->b2 * state->z2; if (state->i >= 0.f) { // 3rd degree Lagrange interpolation + Horner's rule const float k1 = state->xz1 - state->xz2; const float k2 = 0.333333333333333f * (state->xz3 - o); const float k3 = o - k1; const float k4 = k3 - state->xz1; const float a = k2 - k4 - 0.5f * k4; const float b = k3 - k1 - 0.5f * (state->xz1 + state->xz3); const float c = 0.5f * (k1 + k2); y[j] = o + state->i * (a + state->i * (b + state->i * c)); state->i += coeffs->k; j++; } state->z4 = state->z3; state->z3 = state->z2; state->z2 = state->z1; state->z1 = z0; state->xz3 = state->xz2; state->xz2 = state->xz1; state->xz1 = o; state->i += 1.f; i++; } } else { while (i < *n_in_samples && j < *n_out_samples) { while (state->i < 1.f && j < *n_out_samples) { // 3rd degree Lagrange interpolation + Horner's rule const float k1 = state->xz2 - state->xz1; const float k2 = 0.333333333333333f * (x[i] - state->xz3); const float k3 = state->xz3 - k1; const float k4 = state->xz2 - k3; const float a = k2 + k4 + 0.5f * k4; const float b = k3 - k1 - 0.5f * (x[i] + state->xz2); const float c = 0.5f * (k1 + k2); const float o = state->xz3 + state->i * (a + state->i * (b + state->i * c)); // TDF-II const float v0 = coeffs->b0 * o; const float v1 = coeffs->b1 * o; const float v2 = coeffs->b2 * o; y[j] = v0 + state->z1; state->z1 = v1 - coeffs->a1 * y[j] + state->z2; state->z2 = coeffs->b2 * o - coeffs->a2 * y[j] + state->z3; state->z3 = v1 - coeffs->a3 * y[j] + state->z4; state->z4 = v0 - coeffs->a4 * y[j]; state->i += coeffs->k; j++; } if (state->i >= 1.f) { state->xz3 = state->xz2; state->xz2 = state->xz1; state->xz1 = x[i]; state->i -= 1.f; i++; } } } *n_in_samples = i; *n_out_samples = j; } static inline void bw_src_process_multi(const bw_src_coeffs *BW_RESTRICT coeffs, bw_src_state **BW_RESTRICT state, const float **x, float **y, int n_channels, int **n_in_samples, int **n_out_samples) { for (int i = 0; i < n_channels; i++) bw_src_process(coeffs, state[i], x[i], y[i], n_in_samples[i], n_out_samples[i]); } #ifdef __cplusplus } #endif #endif