/* * Brickworks * * Copyright (C) 2022-2024 Orastron Srl unipersonale * * Brickworks is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3 of the License. * * Brickworks is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Brickworks. If not, see . * * File author: Stefano D'Angelo */ /*! * module_type {{{ dsp }}} * version {{{ 1.1.1 }}} * requires {{{ bw_common bw_math bw_one_pole }}} * description {{{ * Antialiased tanh-based saturation with parametric bias and gain * (compensation) and output bias removal. * * In other words this implements (approximately) * * > y(n) = tanh(gain \* x(n) + bias) - tanh(bias) * * with antialiasing and optionally dividing the output by gain. * * As a side effect, antialiasing causes attenuation at higher frequencies * (about 3 dB at 0.5 × Nyquist frequency and rapidly increasing at higher * frequencies). * * The antialiasing technique used here is described in * * J. D. Parker, V. Zavalishin, and E. Le Bivic, "Reducing the Aliasing of * Nonlinear Waveshaping Using Continuous-Time Convolution", Proc. 19th Intl. * Conf. Digital Audio Effects (DAFx-16), pp. 137-144, Brno, Czech Republic, * September 2016. * }}} * changelog {{{ * * }}} */ #ifndef BW_SATUR_H #define BW_SATUR_H #include #ifdef __cplusplus extern "C" { #endif /*! api {{{ * #### bw_satur_coeffs * ```>>> */ typedef struct bw_satur_coeffs bw_satur_coeffs; /*! <<<``` * Coefficients and related. * * #### bw_satur_state * ```>>> */ typedef struct bw_satur_state bw_satur_state; /*! <<<``` * Internal state and related. * * #### bw_satur_init() * ```>>> */ static inline void bw_satur_init( bw_satur_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Initializes input parameter values in `coeffs`. * * #### bw_satur_set_sample_rate() * ```>>> */ static inline void bw_satur_set_sample_rate( bw_satur_coeffs * BW_RESTRICT coeffs, float sample_rate); /*! <<<``` * Sets the `sample_rate` (Hz) value in `coeffs`. * * #### bw_satur_reset_coeffs() * ```>>> */ static inline void bw_satur_reset_coeffs( bw_satur_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Resets coefficients in `coeffs` to assume their target values. * * #### bw_satur_reset_state() * ```>>> */ static inline float bw_satur_reset_state( const bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT state, float x_0); /*! <<<``` * Resets the given `state` to its initial values using the given `coeffs` * and the initial input value `x_0`. * * Returns the corresponding initial output value. * * #### bw_satur_reset_state_multi() * ```>>> */ static inline void bw_satur_reset_state_multi( const bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels); /*! <<<``` * Resets each of the `n_channels` `state`s to its initial values using the * given `coeffs` and the corresponding initial input value in the `x_0` * array. * * The corresponding initial output values are written into the `y_0` array, * if not `BW_NULL`. * * #### bw_satur_update_coeffs_ctrl() * ```>>> */ static inline void bw_satur_update_coeffs_ctrl( bw_satur_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers control-rate update of coefficients in `coeffs`. * * #### bw_satur_update_coeffs_audio() * ```>>> */ static inline void bw_satur_update_coeffs_audio( bw_satur_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers audio-rate update of coefficients in `coeffs`. * * #### bw_satur_process1() * ```>>> */ static inline float bw_satur_process1( const bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT state, float x); static inline float bw_satur_process1_comp( const bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT state, float x); /*! <<<``` * These function process one input sample `x` using `coeffs`, while using * and updating `state`. They return the corresponding output sample. * * In particular: * * `bw_satur_process1()` assumes that gain compensation is disabled; * * `bw_satur_process1_comp()` assumes that gain compensation is enabled. * * The actual gain compensation parameter value is ignored. * * #### bw_satur_process() * ```>>> */ static inline void bw_satur_process( bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the input buffer `x` and fills the * first `n_samples` of the output buffer `y`, while using and updating both * `coeffs` and `state` (control and audio rate). * * #### bw_satur_process_multi() * ```>>> */ static inline void bw_satur_process_multi( bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the `n_channels` input buffers `x` and * fills the first `n_samples` of the `n_channels` output buffers `y`, while * using and updating both the common `coeffs` and each of the `n_channels` * `state`s (control and audio rate). * * #### bw_satur_set_bias() * ```>>> */ static inline void bw_satur_set_bias( bw_satur_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the input bias `value` in `coeffs`. * * Valid range: [`-1e12f`, `1e12f`]. * * Default value: `0.f`. * * #### bw_satur_set_gain() * ```>>> */ static inline void bw_satur_set_gain( bw_satur_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the gain `value` in `coeffs`. * * Valid range: [`1e-12f`, `1e12f`]. * * Default value: `1.f`. * * #### bw_satur_set_gain_compensation() * ```>>> */ static inline void bw_satur_set_gain_compensation( bw_satur_coeffs * BW_RESTRICT coeffs, char value); /*! <<<``` * Sets whether the output should be divided by gain (`value` non-`0`) or not * (`0`). * * Default value: `0` (off). * * #### bw_satur_coeffs_is_valid() * ```>>> */ static inline char bw_satur_coeffs_is_valid( const bw_satur_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Tries to determine whether `coeffs` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * `coeffs` must at least point to a readable memory block of size greater * than or equal to that of `bw_satur_coeffs`. * * #### bw_satur_state_is_valid() * ```>>> */ static inline char bw_satur_state_is_valid( const bw_satur_coeffs * BW_RESTRICT coeffs, const bw_satur_state * BW_RESTRICT state); /*! <<<``` * Tries to determine whether `state` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * If `coeffs` is not `BW_NULL` extra cross-checks might be performed * (`state` is supposed to be associated to `coeffs`). * * `state` must at least point to a readable memory block of size greater * than or equal to that of `bw_satur_state`. * }}} */ #ifdef __cplusplus } #endif /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ #include #include #ifdef __cplusplus extern "C" { #endif #ifdef BW_DEBUG_DEEP enum bw_satur_coeffs_state { bw_satur_coeffs_state_invalid, bw_satur_coeffs_state_init, bw_satur_coeffs_state_set_sample_rate, bw_satur_coeffs_state_reset_coeffs }; #endif struct bw_satur_coeffs { #ifdef BW_DEBUG_DEEP uint32_t hash; enum bw_satur_coeffs_state state; uint32_t reset_id; #endif // Sub-components bw_one_pole_coeffs smooth_coeffs; bw_one_pole_state smooth_bias_state; bw_one_pole_state smooth_gain_state; // Coefficients float bias_dc; float inv_gain; // Parameters float bias; float gain; char gain_compensation; }; struct bw_satur_state { #ifdef BW_DEBUG_DEEP uint32_t hash; uint32_t coeffs_reset_id; #endif // States float x_z1; float F_z1; }; static inline float bw_satur_tanhf( float x) { const float xm = bw_clipf(x, -2.115287308554551f, 2.115287308554551f); const float axm = bw_absf(xm); return xm * axm * (0.01218073260037716f * axm - 0.2750231331124371f) + xm; } static inline void bw_satur_init( bw_satur_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); bw_one_pole_init(&coeffs->smooth_coeffs); bw_one_pole_set_tau(&coeffs->smooth_coeffs, 0.005f); bw_one_pole_set_sticky_thresh(&coeffs->smooth_coeffs, 1e-3f); coeffs->bias = 0.f; coeffs->gain = 1.f; coeffs->gain_compensation = 0; #ifdef BW_DEBUG_DEEP coeffs->hash = bw_hash_sdbm("bw_satur_coeffs"); coeffs->state = bw_satur_coeffs_state_init; coeffs->reset_id = coeffs->hash + 1; #endif BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_satur_coeffs_state_init); } static inline void bw_satur_set_sample_rate( bw_satur_coeffs * BW_RESTRICT coeffs, float sample_rate) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init); BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f); bw_one_pole_set_sample_rate(&coeffs->smooth_coeffs, sample_rate); bw_one_pole_reset_coeffs(&coeffs->smooth_coeffs); #ifdef BW_DEBUG_DEEP coeffs->state = bw_satur_coeffs_state_set_sample_rate; #endif BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_satur_coeffs_state_set_sample_rate); } static inline void bw_satur_do_update_coeffs( bw_satur_coeffs * BW_RESTRICT coeffs, char force) { float bias_cur = bw_one_pole_get_y_z1(&coeffs->smooth_bias_state); if (force || coeffs->bias != bias_cur) { bias_cur = bw_one_pole_process1_sticky_abs(&coeffs->smooth_coeffs, &coeffs->smooth_bias_state, coeffs->bias); coeffs->bias_dc = bw_satur_tanhf(bias_cur); } float gain_cur = bw_one_pole_get_y_z1(&coeffs->smooth_gain_state); if (force || coeffs->gain != gain_cur) { gain_cur = bw_one_pole_process1_sticky_rel(&coeffs->smooth_coeffs, &coeffs->smooth_gain_state, coeffs->gain); coeffs->inv_gain = bw_rcpf(gain_cur); } } static inline void bw_satur_reset_coeffs( bw_satur_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_set_sample_rate); bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_bias_state, coeffs->bias); bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_gain_state, coeffs->gain); bw_satur_do_update_coeffs(coeffs, 1); #ifdef BW_DEBUG_DEEP coeffs->state = bw_satur_coeffs_state_reset_coeffs; coeffs->reset_id++; #endif BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_satur_coeffs_state_reset_coeffs); } static inline float bw_satur_reset_state( const bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT state, float x_0) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT(bw_is_finite(x_0)); const float x = bw_one_pole_get_y_z1(&coeffs->smooth_gain_state) * x_0 + bw_one_pole_get_y_z1(&coeffs->smooth_bias_state); const float ax = bw_absf(x); const float F = ax >= 2.115287308554551f ? ax - 0.6847736211329452f : ax * ax * ((0.00304518315009429f * ax - 0.09167437770414569f) * ax + 0.5f); const float yb = bw_satur_tanhf(x); const float y = (coeffs->gain_compensation ? coeffs->inv_gain : 1.f) * (yb - coeffs->bias_dc); state->x_z1 = x; state->F_z1 = F; #ifdef BW_DEBUG_DEEP state->hash = bw_hash_sdbm("bw_satur_state"); state->coeffs_reset_id = coeffs->reset_id; #endif BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_satur_reset_state_multi( const bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x_0 != BW_NULL); if (y_0 != BW_NULL) for (size_t i = 0; i < n_channels; i++) y_0[i] = bw_satur_reset_state(coeffs, state[i], x_0[i]); else for (size_t i = 0; i < n_channels; i++) bw_satur_reset_state(coeffs, state[i], x_0[i]); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1); } static inline void bw_satur_update_coeffs_ctrl( bw_satur_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); (void)coeffs; } static inline void bw_satur_update_coeffs_audio( bw_satur_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); bw_satur_do_update_coeffs(coeffs, 0); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); } static inline float bw_satur_process1( const bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); x = bw_one_pole_get_y_z1(&coeffs->smooth_gain_state) * x + bw_one_pole_get_y_z1(&coeffs->smooth_bias_state); const float ax = bw_absf(x); const float F = ax >= 2.115287308554551f ? ax - 0.6847736211329452f : ax * ax * ((0.00304518315009429f * ax - 0.09167437770414569f) * ax + 0.5f); const float d = x - state->x_z1; const float yb = d * d < 1e-6f ? bw_satur_tanhf(0.5f * (x + state->x_z1)) : (F - state->F_z1) * bw_rcpf(d); const float y = yb - coeffs->bias_dc; state->x_z1 = x; state->F_z1 = F; BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline float bw_satur_process1_comp( const bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); const float y = coeffs->inv_gain * bw_satur_process1(coeffs, state, x); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_satur_process( bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state)); BW_ASSERT(x != BW_NULL); BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples)); BW_ASSERT(y != BW_NULL); if (coeffs->gain_compensation) for (size_t i = 0; i < n_samples; i++) { bw_satur_update_coeffs_audio(coeffs); y[i] = bw_satur_process1_comp(coeffs, state, x[i]); } else for (size_t i = 0; i < n_samples; i++) { bw_satur_update_coeffs_audio(coeffs); y[i] = bw_satur_process1(coeffs, state, x[i]); } BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples)); } static inline void bw_satur_process_multi( bw_satur_coeffs * BW_RESTRICT coeffs, bw_satur_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x != BW_NULL); BW_ASSERT(y != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(y[i] != y[j]); for (size_t i = 0; i < n_channels; i++) for (size_t j = 0; j < n_channels; j++) BW_ASSERT(i == j || x[i] != y[j]); #endif bw_satur_update_coeffs_ctrl(coeffs); if (coeffs->gain_compensation) for (size_t i = 0; i < n_samples; i++) { bw_satur_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) y[j][i] = bw_satur_process1_comp(coeffs, state[j], x[j][i]); } else for (size_t i = 0; i < n_samples; i++) { bw_satur_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) y[j][i] = bw_satur_process1(coeffs, state[j], x[j][i]); } BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs); } static inline void bw_satur_set_bias( bw_satur_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= -1e12f && value <= 1e12f); coeffs->bias = value; BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init); } static inline void bw_satur_set_gain( bw_satur_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-12f && value <= 1e12f); coeffs->gain = value; BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init); } static inline void bw_satur_set_gain_compensation( bw_satur_coeffs * BW_RESTRICT coeffs, char value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init); coeffs->gain_compensation = value; BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init); } static inline char bw_satur_coeffs_is_valid( const bw_satur_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); #ifdef BW_DEBUG_DEEP if (coeffs->hash != bw_hash_sdbm("bw_satur_coeffs")) return 0; if (coeffs->state < bw_satur_coeffs_state_init || coeffs->state > bw_satur_coeffs_state_reset_coeffs) return 0; #endif if (!bw_is_finite(coeffs->bias) || coeffs->bias < -1e12f || coeffs->bias > 1e12f) return 0; if (!bw_is_finite(coeffs->gain) || coeffs->gain < 1e-12f || coeffs->gain > 1e12f) return 0; if (!bw_one_pole_coeffs_is_valid(&coeffs->smooth_coeffs)) return 0; #ifdef BW_DEBUG_DEEP if (coeffs->state >= bw_satur_coeffs_state_reset_coeffs) { if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_bias_state)) return 0; if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_gain_state)) return 0; if (!bw_is_finite(coeffs->bias_dc) || coeffs->bias_dc < -1.f || coeffs->bias_dc > 1.f) return 0; if (!bw_is_finite(coeffs->inv_gain) || coeffs->inv_gain <= 0.f) return 0; } #endif return 1; } static inline char bw_satur_state_is_valid( const bw_satur_coeffs * BW_RESTRICT coeffs, const bw_satur_state * BW_RESTRICT state) { BW_ASSERT(state != BW_NULL); #ifdef BW_DEBUG_DEEP if (state->hash != bw_hash_sdbm("bw_satur_state")) return 0; if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id) return 0; #endif (void)coeffs; return bw_is_finite(state->x_z1) && bw_is_finite(state->F_z1); } #ifdef __cplusplus } #ifndef BW_CXX_NO_ARRAY # include #endif namespace Brickworks { /*** Public C++ API ***/ /*! api_cpp {{{ * ##### Brickworks::Satur * ```>>> */ template class Satur { public: Satur(); void setSampleRate( float sampleRate); void reset( float x0 = 0.f, float * BW_RESTRICT y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( float x0, std::array * BW_RESTRICT y0); #endif void reset( const float * x0, float * y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( std::array x0, std::array * BW_RESTRICT y0 = nullptr); #endif void process( const float * const * x, float * const * y, size_t nSamples); #ifndef BW_CXX_NO_ARRAY void process( std::array x, std::array y, size_t nSamples); #endif void setBias( float value); void setGain( float value); void setGainCompensation( bool value); /*! <<<... * } * ``` * }}} */ /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ private: bw_satur_coeffs coeffs; bw_satur_state states[N_CHANNELS]; bw_satur_state * BW_RESTRICT statesP[N_CHANNELS]; }; template inline Satur::Satur() { bw_satur_init(&coeffs); for (size_t i = 0; i < N_CHANNELS; i++) statesP[i] = states + i; } template inline void Satur::setSampleRate( float sampleRate) { bw_satur_set_sample_rate(&coeffs, sampleRate); } template inline void Satur::reset( float x0, float * BW_RESTRICT y0) { bw_satur_reset_coeffs(&coeffs); if (y0 != nullptr) for (size_t i = 0; i < N_CHANNELS; i++) y0[i] = bw_satur_reset_state(&coeffs, states + i, x0); else for (size_t i = 0; i < N_CHANNELS; i++) bw_satur_reset_state(&coeffs, states + i, x0); } #ifndef BW_CXX_NO_ARRAY template inline void Satur::reset( float x0, std::array * BW_RESTRICT y0) { reset(x0, y0 != nullptr ? y0->data() : nullptr); } #endif template inline void Satur::reset( const float * x0, float * y0) { bw_satur_reset_coeffs(&coeffs); bw_satur_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS); } #ifndef BW_CXX_NO_ARRAY template inline void Satur::reset( std::array x0, std::array * BW_RESTRICT y0) { reset(x0.data(), y0 != nullptr ? y0->data() : nullptr); } #endif template inline void Satur::process( const float * const * x, float * const * y, size_t nSamples) { bw_satur_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples); } #ifndef BW_CXX_NO_ARRAY template inline void Satur::process( std::array x, std::array y, size_t nSamples) { process(x.data(), y.data(), nSamples); } #endif template inline void Satur::setBias( float value) { bw_satur_set_bias(&coeffs, value); } template inline void Satur::setGain( float value) { bw_satur_set_gain(&coeffs, value); } template inline void Satur::setGainCompensation( bool value) { bw_satur_set_gain_compensation(&coeffs, value); } } #endif #endif