/*
* Brickworks
*
* Copyright (C) 2022-2024 Orastron Srl unipersonale
*
* Brickworks is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* Brickworks is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Brickworks. If not, see .
*
* File author: Stefano D'Angelo
*/
/*!
* module_type {{{ dsp }}}
* version {{{ 1.1.1 }}}
* requires {{{ bw_common bw_math bw_one_pole }}}
* description {{{
* Antialiased tanh-based saturation with parametric bias and gain
* (compensation) and output bias removal.
*
* In other words this implements (approximately)
*
* > y(n) = tanh(gain \* x(n) + bias) - tanh(bias)
*
* with antialiasing and optionally dividing the output by gain.
*
* As a side effect, antialiasing causes attenuation at higher frequencies
* (about 3 dB at 0.5 × Nyquist frequency and rapidly increasing at higher
* frequencies).
*
* The antialiasing technique used here is described in
*
* J. D. Parker, V. Zavalishin, and E. Le Bivic, "Reducing the Aliasing of
* Nonlinear Waveshaping Using Continuous-Time Convolution", Proc. 19th Intl.
* Conf. Digital Audio Effects (DAFx-16), pp. 137-144, Brno, Czech Republic,
* September 2016.
* }}}
* changelog {{{
*
* - Version 1.1.1:
*
* - Added debugging check in
bw_satur_process_multi()
* to ensure that buffers used for both input and output appear at
* the same channel indices.
*
*
* - Version 1.1.0:
*
* - Fixed gain compensation in
bw_satur_process_multi().
* - Now using
BW_NULL
and
* BW_CXX_NO_ARRAY
.
*
*
* - Version 1.0.0:
*
* - Changed default value for gain compensation to off.
* - Added initial input value to
*
bw_satur_reset_state()
.
* - Added
bw_satur_reset_state_multi()
and updated C++
* API in this regard.
* - Now
bw_satur_reset_state()
returns the initial
* output value.
* - Added overloaded C++
reset()
functions taking
* arrays as arguments.
* bw_satur_process()
and
* bw_satur_process_multi()
now use
* size_t
to count samples and channels.
* - Added more
const
and BW_RESTRICT
* specifiers to input arguments and implementation.
* - Moved C++ code to C header.
* - Added overloaded C++
process()
function taking
* C-style arrays as arguments.
* - Removed usage of reserved identifiers.
* - Clearly specified parameter validity ranges.
* - Added debugging code.
*
*
* - Version 0.6.0:
*
* - Removed dependency on bw_config.
*
*
* - Version 0.5.0:
*
* - Added
bw_satur_process_multi()
.
* - Fixed gain coefficient reset bug.
* - Fixed initial state bug.
* - Added C++ wrapper.
*
*
* - Version 0.4.0:
*
* - Fixed unused parameter warnings.
*
*
* - Version 0.2.0:
*
*
*
* }}}
*/
#ifndef BW_SATUR_H
#define BW_SATUR_H
#include
#ifdef __cplusplus
extern "C" {
#endif
/*! api {{{
* #### bw_satur_coeffs
* ```>>> */
typedef struct bw_satur_coeffs bw_satur_coeffs;
/*! <<<```
* Coefficients and related.
*
* #### bw_satur_state
* ```>>> */
typedef struct bw_satur_state bw_satur_state;
/*! <<<```
* Internal state and related.
*
* #### bw_satur_init()
* ```>>> */
static inline void bw_satur_init(
bw_satur_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_satur_set_sample_rate()
* ```>>> */
static inline void bw_satur_set_sample_rate(
bw_satur_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_satur_reset_coeffs()
* ```>>> */
static inline void bw_satur_reset_coeffs(
bw_satur_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_satur_reset_state()
* ```>>> */
static inline float bw_satur_reset_state(
const bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT state,
float x_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the initial input value `x_0`.
*
* Returns the corresponding initial output value.
*
* #### bw_satur_reset_state_multi()
* ```>>> */
static inline void bw_satur_reset_state_multi(
const bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding initial input value in the `x_0`
* array.
*
* The corresponding initial output values are written into the `y_0` array,
* if not `BW_NULL`.
*
* #### bw_satur_update_coeffs_ctrl()
* ```>>> */
static inline void bw_satur_update_coeffs_ctrl(
bw_satur_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_satur_update_coeffs_audio()
* ```>>> */
static inline void bw_satur_update_coeffs_audio(
bw_satur_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_satur_process1()
* ```>>> */
static inline float bw_satur_process1(
const bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT state,
float x);
static inline float bw_satur_process1_comp(
const bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT state,
float x);
/*! <<<```
* These function process one input sample `x` using `coeffs`, while using
* and updating `state`. They return the corresponding output sample.
*
* In particular:
* * `bw_satur_process1()` assumes that gain compensation is disabled;
* * `bw_satur_process1_comp()` assumes that gain compensation is enabled.
*
* The actual gain compensation parameter value is ignored.
*
* #### bw_satur_process()
* ```>>> */
static inline void bw_satur_process(
bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffer `y`, while using and updating both
* `coeffs` and `state` (control and audio rate).
*
* #### bw_satur_process_multi()
* ```>>> */
static inline void bw_satur_process_multi(
bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
* using and updating both the common `coeffs` and each of the `n_channels`
* `state`s (control and audio rate).
*
* #### bw_satur_set_bias()
* ```>>> */
static inline void bw_satur_set_bias(
bw_satur_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the input bias `value` in `coeffs`.
*
* Valid range: [`-1e12f`, `1e12f`].
*
* Default value: `0.f`.
*
* #### bw_satur_set_gain()
* ```>>> */
static inline void bw_satur_set_gain(
bw_satur_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the gain `value` in `coeffs`.
*
* Valid range: [`1e-12f`, `1e12f`].
*
* Default value: `1.f`.
*
* #### bw_satur_set_gain_compensation()
* ```>>> */
static inline void bw_satur_set_gain_compensation(
bw_satur_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether the output should be divided by gain (`value` non-`0`) or not
* (`0`).
*
* Default value: `0` (off).
*
* #### bw_satur_coeffs_is_valid()
* ```>>> */
static inline char bw_satur_coeffs_is_valid(
const bw_satur_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_satur_coeffs`.
*
* #### bw_satur_state_is_valid()
* ```>>> */
static inline char bw_satur_state_is_valid(
const bw_satur_coeffs * BW_RESTRICT coeffs,
const bw_satur_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `BW_NULL` extra cross-checks might be performed
* (`state` is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_satur_state`.
* }}} */
#ifdef __cplusplus
}
#endif
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
#include
#include
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_satur_coeffs_state {
bw_satur_coeffs_state_invalid,
bw_satur_coeffs_state_init,
bw_satur_coeffs_state_set_sample_rate,
bw_satur_coeffs_state_reset_coeffs
};
#endif
struct bw_satur_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_satur_coeffs_state state;
uint32_t reset_id;
#endif
// Sub-components
bw_one_pole_coeffs smooth_coeffs;
bw_one_pole_state smooth_bias_state;
bw_one_pole_state smooth_gain_state;
// Coefficients
float bias_dc;
float inv_gain;
// Parameters
float bias;
float gain;
char gain_compensation;
};
struct bw_satur_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
// States
float x_z1;
float F_z1;
};
static inline float bw_satur_tanhf(
float x) {
const float xm = bw_clipf(x, -2.115287308554551f, 2.115287308554551f);
const float axm = bw_absf(xm);
return xm * axm * (0.01218073260037716f * axm - 0.2750231331124371f) + xm;
}
static inline void bw_satur_init(
bw_satur_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
bw_one_pole_init(&coeffs->smooth_coeffs);
bw_one_pole_set_tau(&coeffs->smooth_coeffs, 0.005f);
bw_one_pole_set_sticky_thresh(&coeffs->smooth_coeffs, 1e-3f);
coeffs->bias = 0.f;
coeffs->gain = 1.f;
coeffs->gain_compensation = 0;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_satur_coeffs");
coeffs->state = bw_satur_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_satur_coeffs_state_init);
}
static inline void bw_satur_set_sample_rate(
bw_satur_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
bw_one_pole_set_sample_rate(&coeffs->smooth_coeffs, sample_rate);
bw_one_pole_reset_coeffs(&coeffs->smooth_coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_satur_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_satur_coeffs_state_set_sample_rate);
}
static inline void bw_satur_do_update_coeffs(
bw_satur_coeffs * BW_RESTRICT coeffs,
char force) {
float bias_cur = bw_one_pole_get_y_z1(&coeffs->smooth_bias_state);
if (force || coeffs->bias != bias_cur) {
bias_cur = bw_one_pole_process1_sticky_abs(&coeffs->smooth_coeffs, &coeffs->smooth_bias_state, coeffs->bias);
coeffs->bias_dc = bw_satur_tanhf(bias_cur);
}
float gain_cur = bw_one_pole_get_y_z1(&coeffs->smooth_gain_state);
if (force || coeffs->gain != gain_cur) {
gain_cur = bw_one_pole_process1_sticky_rel(&coeffs->smooth_coeffs, &coeffs->smooth_gain_state, coeffs->gain);
coeffs->inv_gain = bw_rcpf(gain_cur);
}
}
static inline void bw_satur_reset_coeffs(
bw_satur_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_set_sample_rate);
bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_bias_state, coeffs->bias);
bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_gain_state, coeffs->gain);
bw_satur_do_update_coeffs(coeffs, 1);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_satur_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_satur_coeffs_state_reset_coeffs);
}
static inline float bw_satur_reset_state(
const bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT state,
float x_0) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT(bw_is_finite(x_0));
const float x = bw_one_pole_get_y_z1(&coeffs->smooth_gain_state) * x_0 + bw_one_pole_get_y_z1(&coeffs->smooth_bias_state);
const float ax = bw_absf(x);
const float F = ax >= 2.115287308554551f ? ax - 0.6847736211329452f : ax * ax * ((0.00304518315009429f * ax - 0.09167437770414569f) * ax + 0.5f);
const float yb = bw_satur_tanhf(x);
const float y = (coeffs->gain_compensation ? coeffs->inv_gain : 1.f) * (yb - coeffs->bias_dc);
state->x_z1 = x;
state->F_z1 = F;
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_satur_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_satur_reset_state_multi(
const bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x_0 != BW_NULL);
if (y_0 != BW_NULL)
for (size_t i = 0; i < n_channels; i++)
y_0[i] = bw_satur_reset_state(coeffs, state[i], x_0[i]);
else
for (size_t i = 0; i < n_channels; i++)
bw_satur_reset_state(coeffs, state[i], x_0[i]);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1);
}
static inline void bw_satur_update_coeffs_ctrl(
bw_satur_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
(void)coeffs;
}
static inline void bw_satur_update_coeffs_audio(
bw_satur_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
bw_satur_do_update_coeffs(coeffs, 0);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
}
static inline float bw_satur_process1(
const bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
x = bw_one_pole_get_y_z1(&coeffs->smooth_gain_state) * x + bw_one_pole_get_y_z1(&coeffs->smooth_bias_state);
const float ax = bw_absf(x);
const float F = ax >= 2.115287308554551f ? ax - 0.6847736211329452f : ax * ax * ((0.00304518315009429f * ax - 0.09167437770414569f) * ax + 0.5f);
const float d = x - state->x_z1;
const float yb = d * d < 1e-6f ? bw_satur_tanhf(0.5f * (x + state->x_z1)) : (F - state->F_z1) * bw_rcpf(d);
const float y = yb - coeffs->bias_dc;
state->x_z1 = x;
state->F_z1 = F;
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline float bw_satur_process1_comp(
const bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
const float y = coeffs->inv_gain * bw_satur_process1(coeffs, state, x);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_satur_process(
bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state));
BW_ASSERT(x != BW_NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
BW_ASSERT(y != BW_NULL);
if (coeffs->gain_compensation)
for (size_t i = 0; i < n_samples; i++) {
bw_satur_update_coeffs_audio(coeffs);
y[i] = bw_satur_process1_comp(coeffs, state, x[i]);
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_satur_update_coeffs_audio(coeffs);
y[i] = bw_satur_process1(coeffs, state, x[i]);
}
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_satur_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples));
}
static inline void bw_satur_process_multi(
bw_satur_coeffs * BW_RESTRICT coeffs,
bw_satur_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
BW_ASSERT(state != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(state[i] != state[j]);
#endif
BW_ASSERT(x != BW_NULL);
BW_ASSERT(y != BW_NULL);
#ifndef BW_NO_DEBUG
for (size_t i = 0; i < n_channels; i++)
for (size_t j = i + 1; j < n_channels; j++)
BW_ASSERT(y[i] != y[j]);
for (size_t i = 0; i < n_channels; i++)
for (size_t j = 0; j < n_channels; j++)
BW_ASSERT(i == j || x[i] != y[j]);
#endif
bw_satur_update_coeffs_ctrl(coeffs);
if (coeffs->gain_compensation)
for (size_t i = 0; i < n_samples; i++) {
bw_satur_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++)
y[j][i] = bw_satur_process1_comp(coeffs, state[j], x[j][i]);
}
else
for (size_t i = 0; i < n_samples; i++) {
bw_satur_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++)
y[j][i] = bw_satur_process1(coeffs, state[j], x[j][i]);
}
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_reset_coeffs);
}
static inline void bw_satur_set_bias(
bw_satur_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= -1e12f && value <= 1e12f);
coeffs->bias = value;
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init);
}
static inline void bw_satur_set_gain(
bw_satur_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-12f && value <= 1e12f);
coeffs->gain = value;
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init);
}
static inline void bw_satur_set_gain_compensation(
bw_satur_coeffs * BW_RESTRICT coeffs,
char value) {
BW_ASSERT(coeffs != BW_NULL);
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init);
coeffs->gain_compensation = value;
BW_ASSERT_DEEP(bw_satur_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_satur_coeffs_state_init);
}
static inline char bw_satur_coeffs_is_valid(
const bw_satur_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_satur_coeffs"))
return 0;
if (coeffs->state < bw_satur_coeffs_state_init || coeffs->state > bw_satur_coeffs_state_reset_coeffs)
return 0;
#endif
if (!bw_is_finite(coeffs->bias) || coeffs->bias < -1e12f || coeffs->bias > 1e12f)
return 0;
if (!bw_is_finite(coeffs->gain) || coeffs->gain < 1e-12f || coeffs->gain > 1e12f)
return 0;
if (!bw_one_pole_coeffs_is_valid(&coeffs->smooth_coeffs))
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_satur_coeffs_state_reset_coeffs) {
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_bias_state))
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_gain_state))
return 0;
if (!bw_is_finite(coeffs->bias_dc) || coeffs->bias_dc < -1.f || coeffs->bias_dc > 1.f)
return 0;
if (!bw_is_finite(coeffs->inv_gain) || coeffs->inv_gain <= 0.f)
return 0;
}
#endif
return 1;
}
static inline char bw_satur_state_is_valid(
const bw_satur_coeffs * BW_RESTRICT coeffs,
const bw_satur_state * BW_RESTRICT state) {
BW_ASSERT(state != BW_NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_satur_state"))
return 0;
if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
(void)coeffs;
return bw_is_finite(state->x_z1) && bw_is_finite(state->F_z1);
}
#ifdef __cplusplus
}
#ifndef BW_CXX_NO_ARRAY
# include
#endif
namespace Brickworks {
/*** Public C++ API ***/
/*! api_cpp {{{
* ##### Brickworks::Satur
* ```>>> */
template
class Satur {
public:
Satur();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
float x0,
std::array * BW_RESTRICT y0);
#endif
void reset(
const float * x0,
float * y0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
std::array x0,
std::array * BW_RESTRICT y0 = nullptr);
#endif
void process(
const float * const * x,
float * const * y,
size_t nSamples);
#ifndef BW_CXX_NO_ARRAY
void process(
std::array x,
std::array y,
size_t nSamples);
#endif
void setBias(
float value);
void setGain(
float value);
void setGainCompensation(
bool value);
/*! <<<...
* }
* ```
* }}} */
/*** Implementation ***/
/* WARNING: This part of the file is not part of the public API. Its content may
* change at any time in future versions. Please, do not use it directly. */
private:
bw_satur_coeffs coeffs;
bw_satur_state states[N_CHANNELS];
bw_satur_state * BW_RESTRICT statesP[N_CHANNELS];
};
template
inline Satur::Satur() {
bw_satur_init(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
statesP[i] = states + i;
}
template
inline void Satur::setSampleRate(
float sampleRate) {
bw_satur_set_sample_rate(&coeffs, sampleRate);
}
template
inline void Satur::reset(
float x0,
float * BW_RESTRICT y0) {
bw_satur_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
y0[i] = bw_satur_reset_state(&coeffs, states + i, x0);
else
for (size_t i = 0; i < N_CHANNELS; i++)
bw_satur_reset_state(&coeffs, states + i, x0);
}
#ifndef BW_CXX_NO_ARRAY
template
inline void Satur::reset(
float x0,
std::array * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
#endif
template
inline void Satur::reset(
const float * x0,
float * y0) {
bw_satur_reset_coeffs(&coeffs);
bw_satur_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS);
}
#ifndef BW_CXX_NO_ARRAY
template
inline void Satur::reset(
std::array x0,
std::array * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
#endif
template
inline void Satur::process(
const float * const * x,
float * const * y,
size_t nSamples) {
bw_satur_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples);
}
#ifndef BW_CXX_NO_ARRAY
template
inline void Satur::process(
std::array x,
std::array y,
size_t nSamples) {
process(x.data(), y.data(), nSamples);
}
#endif
template
inline void Satur::setBias(
float value) {
bw_satur_set_bias(&coeffs, value);
}
template
inline void Satur::setGain(
float value) {
bw_satur_set_gain(&coeffs, value);
}
template
inline void Satur::setGainCompensation(
bool value) {
bw_satur_set_gain_compensation(&coeffs, value);
}
}
#endif
#endif