/* * Brickworks * * Copyright (C) 2022-2024 Orastron Srl unipersonale * * Brickworks is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3 of the License. * * Brickworks is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Brickworks. If not, see . * * File author: Stefano D'Angelo */ /*! * module_type {{{ dsp }}} * version {{{ 1.1.1 }}} * requires {{{ bw_common bw_math bw_one_pole }}} * description {{{ * Phase generator with portamento and exponential frequency modulation. * * It outputs a normalized phase signal (range [`0.f`, `1.f`]). * }}} * changelog {{{ * * }}} */ #ifndef BW_PHASE_GEN_H #define BW_PHASE_GEN_H #include #ifdef __cplusplus extern "C" { #endif /*! api {{{ * #### bw_phase_gen_coeffs * ```>>> */ typedef struct bw_phase_gen_coeffs bw_phase_gen_coeffs; /*! <<<``` * Coefficients and related. * * #### bw_phase_gen_state * ```>>> */ typedef struct bw_phase_gen_state bw_phase_gen_state; /*! <<<``` * Internal state and related. * * #### bw_phase_gen_init() * ```>>> */ static inline void bw_phase_gen_init( bw_phase_gen_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Initializes input parameter values in `coeffs`. * * #### bw_phase_gen_set_sample_rate() * ```>>> */ static inline void bw_phase_gen_set_sample_rate( bw_phase_gen_coeffs * BW_RESTRICT coeffs, float sample_rate); /*! <<<``` * Sets the `sample_rate` (Hz) value in `coeffs`. * * #### bw_phase_gen_reset_coeffs() * ```>>> */ static inline void bw_phase_gen_reset_coeffs( bw_phase_gen_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Resets coefficients in `coeffs` to assume their target values. * * #### bw_phase_gen_reset_state() * ```>>> */ static inline void bw_phase_gen_reset_state( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT state, float phase_0, float * BW_RESTRICT y_0, float * BW_RESTRICT y_inc_0); /*! <<<``` * Resets the given `state` to its initial values using the given `coeffs` * and the initial phase value `phase_0`. * * The corresponding initial output and phase increment values are put into * `y_0` and `y_inc_0` respectively. * * `phase_0` must be in [`0.f`, `1.f`). * * #### bw_phase_gen_reset_state_multi() * ```>>> */ static inline void bw_phase_gen_reset_state_multi( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT const * BW_RESTRICT state, const float * phase_0, float * y_0, float * y_inc_0, size_t n_channels); /*! <<<``` * Resets each of the `n_channels` `state`s to its initial values using the * given `coeffs` and the corresponding initial phase value in the `phase_0` * array. * * The corresponding initial output and phase increment values are put into * the `y_0` and `y_inc_0` arrays, respectively, if they are not `BW_NULL`. * * Values in `phase_0` must be in [`0.f`, `1.f`). * * #### bw_phase_gen_update_coeffs_ctrl() * ```>>> */ static inline void bw_phase_gen_update_coeffs_ctrl( bw_phase_gen_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers control-rate update of coefficients in `coeffs`. * * #### bw_phase_gen_update_coeffs_audio() * ```>>> */ static inline void bw_phase_gen_update_coeffs_audio( bw_phase_gen_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers audio-rate update of coefficients in `coeffs`. * * #### bw_phase_gen_process1\*() * ```>>> */ static inline void bw_phase_gen_process1( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT state, float * BW_RESTRICT y, float * BW_RESTRICT y_inc); static inline void bw_phase_gen_process1_mod( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT state, float x_mod, float * BW_RESTRICT y, float * BW_RESTRICT y_inc); /*! <<<``` * These functions generate one output sample using `coeffs`, while using * and updating `state`, putting its value in `y` and the corresponding phase * increment value in `y_inc`. * * In particular: * * `bw_phase_gen_process1()` does not apply frequency modulation; * * `bw_phase_gen_process1_mod()` applies exponential frequency modulation * using `x_mod` as modulation input (scale `1.f`/octave). * * #### bw_phase_gen_process() * ```>>> */ static inline void bw_phase_gen_process( bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT state, const float * x_mod, float * y, float * y_inc, size_t n_samples); /*! <<<``` * Generates and fills the first `n_samples` of the output buffer `y`, while * using and updating both `coeffs` and `state` (control and audio rate). * * If `x_mod` is not `BW_NULL`, it is used as a source of exponential * frequency modulation (scale `1.f`/octave). * * If `y_inc` is not `BW_NULL`, it is filled with phase increment values. * * #### bw_phase_gen_process_multi() * ```>>> */ static inline void bw_phase_gen_process_multi( bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x_mod, float * const * y, float * const * y_inc, size_t n_channels, size_t n_samples); /*! <<<``` * Generates and fills the first `n_samples` of the `n_channels` output * buffers `y`, while using and updating both the common `coeffs` and each of * the `n_channels` `state`s (control and audio rate). * * If `x_mod` and the channel-specific element are not `BW_NULL`, this is * used as a source of exponential frequency modulation (scale `1.f`/octave) * for that channel. * * If `y_inc` and the channel-specific element are not `BW_NULL`, this is * filled with phase increment values for that channel. * * #### bw_phase_gen_set_frequency() * ```>>> */ static inline void bw_phase_gen_set_frequency( bw_phase_gen_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the base frequency to `value` (Hz) in `coeffs`. * * `value` must be finite. * * Default value: `1.f`. * * #### bw_phase_gen_set_portamento_tau() * ```>>> */ static inline void bw_phase_gen_set_portamento_tau( bw_phase_gen_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the portamento time constant `value` (s) in `coeffs`. * * `value` must be non-negative. * * Default value: `0.f`. * * #### bw_phase_gen_coeffs_is_valid() * ```>>> */ static inline char bw_phase_gen_coeffs_is_valid( const bw_phase_gen_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Tries to determine whether `coeffs` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * `coeffs` must at least point to a readable memory block of size greater * than or equal to that of `bw_phase_gen_coeffs`. * * #### bw_phase_gen_state_is_valid() * ```>>> */ static inline char bw_phase_gen_state_is_valid( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, const bw_phase_gen_state * BW_RESTRICT state); /*! <<<``` * Tries to determine whether `state` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * If `coeffs` is not `BW_NULL` extra cross-checks might be performed * (`state` is supposed to be associated to `coeffs`). * * `state` must at least point to a readable memory block of size greater * than or equal to that of `bw_phase_gen_state`. * }}} */ #ifdef __cplusplus } #endif /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ #include #include #ifdef __cplusplus extern "C" { #endif #ifdef BW_DEBUG_DEEP enum bw_phase_gen_coeffs_state { bw_phase_gen_coeffs_state_invalid, bw_phase_gen_coeffs_state_init, bw_phase_gen_coeffs_state_set_sample_rate, bw_phase_gen_coeffs_state_reset_coeffs }; #endif struct bw_phase_gen_coeffs { #ifdef BW_DEBUG_DEEP uint32_t hash; enum bw_phase_gen_coeffs_state state; uint32_t reset_id; #endif // Sub-components bw_one_pole_coeffs portamento_coeffs; bw_one_pole_state portamento_state; // Coefficients float T; float portamento_target; // Parameters float frequency; float frequency_prev; }; struct bw_phase_gen_state { #ifdef BW_DEBUG_DEEP uint32_t hash; uint32_t coeffs_reset_id; #endif // States float phase; }; static inline void bw_phase_gen_init( bw_phase_gen_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); bw_one_pole_init(&coeffs->portamento_coeffs); coeffs->frequency = 1.f; #ifdef BW_DEBUG_DEEP coeffs->hash = bw_hash_sdbm("bw_phase_gen_coeffs"); coeffs->state = bw_phase_gen_coeffs_state_init; coeffs->reset_id = coeffs->hash + 1; #endif BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_phase_gen_coeffs_state_init); } static inline void bw_phase_gen_set_sample_rate( bw_phase_gen_coeffs * BW_RESTRICT coeffs, float sample_rate) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init); BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f); bw_one_pole_set_sample_rate(&coeffs->portamento_coeffs, sample_rate); coeffs->T = 1.f / sample_rate; #ifdef BW_DEBUG_DEEP coeffs->state = bw_phase_gen_coeffs_state_set_sample_rate; #endif BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_phase_gen_coeffs_state_set_sample_rate); } static inline void bw_phase_gen_do_update_coeffs_ctrl( bw_phase_gen_coeffs * BW_RESTRICT coeffs, char force) { bw_one_pole_update_coeffs_ctrl(&coeffs->portamento_coeffs); if (force || coeffs->frequency != coeffs->frequency_prev) { coeffs->portamento_target = coeffs->T * coeffs->frequency; coeffs->frequency_prev = coeffs->frequency; } } static inline void bw_phase_gen_reset_coeffs( bw_phase_gen_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_set_sample_rate); bw_one_pole_reset_coeffs(&coeffs->portamento_coeffs); bw_phase_gen_do_update_coeffs_ctrl(coeffs, 1); bw_one_pole_reset_state(&coeffs->portamento_coeffs, &coeffs->portamento_state, coeffs->portamento_target); #ifdef BW_DEBUG_DEEP coeffs->state = bw_phase_gen_coeffs_state_reset_coeffs; coeffs->reset_id++; #endif BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_phase_gen_coeffs_state_reset_coeffs); } static inline void bw_phase_gen_reset_state( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT state, float phase_0, float * BW_RESTRICT y_0, float * BW_RESTRICT y_inc_0) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT(bw_is_finite(phase_0)); BW_ASSERT(phase_0 >= 0.f && phase_0 < 1.f); BW_ASSERT(y_0 != BW_NULL); BW_ASSERT(y_inc_0 != BW_NULL); BW_ASSERT(y_0 != y_inc_0); state->phase = phase_0; *y_inc_0 = bw_one_pole_get_y_z1(&coeffs->portamento_state); *y_inc_0 = bw_absf(*y_inc_0) < 6e-8f ? 0.f : *y_inc_0; // suppress troublesome tiny frequencies (< 0.06 Hz @ fs = 1 MHz, < 0.003 Hz at @ fs = 44.1 kHz) *y_0 = phase_0; #ifdef BW_DEBUG_DEEP state->hash = bw_hash_sdbm("bw_phase_gen_state"); state->coeffs_reset_id = coeffs->reset_id; #endif BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(*y_0)); BW_ASSERT(bw_is_finite(*y_inc_0)); } static inline void bw_phase_gen_reset_state_multi( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT const * BW_RESTRICT state, const float * phase_0, float * y_0, float * y_inc_0, size_t n_channels) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(phase_0 != BW_NULL); BW_ASSERT(y_0 != BW_NULL && y_inc_0 != BW_NULL ? y_0 != y_inc_0 : 1); if (y_0 != BW_NULL) { if (y_inc_0 != BW_NULL) { for (size_t i = 0; i < n_channels; i++) bw_phase_gen_reset_state(coeffs, state[i], phase_0[i], y_0 + i, y_inc_0 + i); } else { for (size_t i = 0; i < n_channels; i++) { float v_inc; bw_phase_gen_reset_state(coeffs, state[i], phase_0[i], y_0 + i, &v_inc); } } } else { if (y_inc_0 != BW_NULL) { for (size_t i = 0; i < n_channels; i++) { float v; bw_phase_gen_reset_state(coeffs, state[i], phase_0[i], &v, y_inc_0 + i); } } else { for (size_t i = 0; i < n_channels; i++) { float v, v_inc; bw_phase_gen_reset_state(coeffs, state[i], phase_0[i], &v, &v_inc); } } } BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1); BW_ASSERT_DEEP(y_inc_0 != BW_NULL ? bw_has_only_finite(y_inc_0, n_channels) : 1); } static inline void bw_phase_gen_update_coeffs_ctrl( bw_phase_gen_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); bw_phase_gen_do_update_coeffs_ctrl(coeffs, 0); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); } static inline void bw_phase_gen_update_coeffs_audio( bw_phase_gen_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); bw_one_pole_process1(&coeffs->portamento_coeffs, &coeffs->portamento_state, coeffs->portamento_target); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); } static inline float bw_phase_gen_update_phase( bw_phase_gen_state * BW_RESTRICT state, float * inc) { *inc = bw_absf(*inc) < 6e-8f ? 0.f : *inc; // suppress troublesome tiny frequencies (< 0.06 Hz @ fs = 1 MHz, < 0.003 Hz at @ fs = 44.1 kHz) state->phase += *inc; state->phase -= bw_floorf(state->phase); return state->phase; } static inline void bw_phase_gen_process1( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT state, float * BW_RESTRICT y, float * BW_RESTRICT y_inc) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state)); BW_ASSERT(y != BW_NULL); BW_ASSERT(y_inc != BW_NULL); BW_ASSERT(y != y_inc); *y_inc = bw_one_pole_get_y_z1(&coeffs->portamento_state); *y = bw_phase_gen_update_phase(state, y_inc); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(*y)); BW_ASSERT(*y >= 0.f && *y < 1.f); BW_ASSERT(bw_is_finite(*y_inc)); } static inline void bw_phase_gen_process1_mod( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT state, float x_mod, float * BW_RESTRICT y, float * BW_RESTRICT y_inc) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x_mod)); BW_ASSERT(y != BW_NULL); BW_ASSERT(y_inc != BW_NULL); BW_ASSERT(y != y_inc); *y_inc = bw_one_pole_get_y_z1(&coeffs->portamento_state) * bw_pow2f(x_mod); *y = bw_phase_gen_update_phase(state, y_inc); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(*y)); BW_ASSERT(*y >= 0.f && *y < 1.f); BW_ASSERT(bw_is_finite(*y_inc)); } static inline void bw_phase_gen_process( bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT state, const float * x_mod, float * y, float * y_inc, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(x_mod != BW_NULL ? bw_has_only_finite(x_mod, n_samples) : 1); BW_ASSERT(y != BW_NULL && y_inc != BW_NULL ? y != y_inc : 1); bw_phase_gen_update_coeffs_ctrl(coeffs); if (y != BW_NULL) { if (x_mod != BW_NULL) { if (y_inc != BW_NULL) for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); bw_phase_gen_process1_mod(coeffs, state, x_mod[i], y + i, y_inc + i); } else for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); float v_phase_inc; bw_phase_gen_process1_mod(coeffs, state, x_mod[i], y + i, &v_phase_inc); } } else { if (y_inc != BW_NULL) for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); bw_phase_gen_process1(coeffs, state, y + i, y_inc + i); } else for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); float v_phase_inc; bw_phase_gen_process1(coeffs, state, y + i, &v_phase_inc); } } } else { if (x_mod != BW_NULL) { if (y_inc != BW_NULL) for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); float v; bw_phase_gen_process1_mod(coeffs, state, x_mod[i], &v, y_inc + i); } else for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); float v, v_phase_inc; bw_phase_gen_process1_mod(coeffs, state, x_mod[i], &v, &v_phase_inc); } } else { if (y_inc != BW_NULL) for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); float v; bw_phase_gen_process1(coeffs, state, &v, y_inc + i); } else for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); float v, v_phase_inc; bw_phase_gen_process1(coeffs, state, &v, &v_phase_inc); } } } BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_phase_gen_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(y != BW_NULL ? bw_has_only_finite(y, n_samples) : 1); BW_ASSERT_DEEP(y_inc != BW_NULL ? bw_has_only_finite(y_inc, n_samples) : 1); } static inline void bw_phase_gen_process_multi( bw_phase_gen_coeffs * BW_RESTRICT coeffs, bw_phase_gen_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x_mod, float * const * y, float * const * y_inc, size_t n_channels, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); if (y != BW_NULL) for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(y[i] == BW_NULL || y[j] == BW_NULL || y[i] != y[j]); if (y_inc != BW_NULL) for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(y_inc[i] == BW_NULL || y_inc[j] == BW_NULL || y_inc[i] != y_inc[j]); if (y != BW_NULL && y_inc != BW_NULL) for (size_t i = 0; i < n_channels; i++) for (size_t j = 0; j < n_channels; j++) BW_ASSERT(y[i] == BW_NULL || y_inc[j] == BW_NULL || y[i] != y_inc[j]); if (x_mod != BW_NULL) { if (y != BW_NULL) for (size_t i = 0; i < n_channels; i++) for (size_t j = 0; j < n_channels; j++) BW_ASSERT(i == j || x_mod[i] == BW_NULL || y[i] == BW_NULL || x_mod[i] != y[j]); if (y_inc != BW_NULL) for (size_t i = 0; i < n_channels; i++) for (size_t j = 0; j < n_channels; j++) BW_ASSERT(i == j || x_mod[i] == BW_NULL || y_inc[i] == BW_NULL || x_mod[i] != y_inc[j]); } #endif bw_phase_gen_update_coeffs_ctrl(coeffs); if (y != BW_NULL) { if (x_mod != BW_NULL) { if (y_inc != BW_NULL) for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) { float v, v_phase_inc; if (x_mod[j]) bw_phase_gen_process1_mod(coeffs, state[j], x_mod[j][i], &v, &v_phase_inc); else bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc); if (y[j]) y[j][i] = v; if (y_inc[j]) y_inc[j][i] = v_phase_inc; } } else for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) { float v, v_phase_inc; if (x_mod[j]) bw_phase_gen_process1_mod(coeffs, state[j], x_mod[j][i], &v, &v_phase_inc); else bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc); if (y[j]) y[j][i] = v; } } } else { if (y_inc != BW_NULL) for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) { float v, v_phase_inc; bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc); if (y[j]) y[j][i] = v; if (y_inc[j]) y_inc[j][i] = v_phase_inc; } } else for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) { float v, v_phase_inc; bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc); if (y[j]) y[j][i] = v; } } } } else { if (x_mod != BW_NULL) { if (y_inc != BW_NULL) for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) { float v, v_phase_inc; if (x_mod[j]) bw_phase_gen_process1_mod(coeffs, state[j], x_mod[j][i], &v, &v_phase_inc); else bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc); if (y_inc[j]) y_inc[j][i] = v_phase_inc; } } else for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) { float v, v_phase_inc; if (x_mod[j]) bw_phase_gen_process1_mod(coeffs, state[j], x_mod[j][i], &v, &v_phase_inc); else bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc); } } } else { if (y_inc != BW_NULL) for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) { float v, v_phase_inc; bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc); if (y_inc[j]) y_inc[j][i] = v_phase_inc; } } else for (size_t i = 0; i < n_samples; i++) { bw_phase_gen_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) { float v, v_phase_inc; bw_phase_gen_process1(coeffs, state[j], &v, &v_phase_inc); } } } } BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs); } static inline void bw_phase_gen_set_frequency( bw_phase_gen_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); coeffs->frequency = value; BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init); } static inline void bw_phase_gen_set_portamento_tau( bw_phase_gen_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 0.f); bw_one_pole_set_tau(&coeffs->portamento_coeffs, value); BW_ASSERT_DEEP(bw_phase_gen_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_phase_gen_coeffs_state_init); } static inline char bw_phase_gen_coeffs_is_valid( const bw_phase_gen_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); #ifdef BW_DEBUG_DEEP if (coeffs->hash != bw_hash_sdbm("bw_phase_gen_coeffs")) return 0; if (coeffs->state < bw_phase_gen_coeffs_state_init || coeffs->state > bw_phase_gen_coeffs_state_reset_coeffs) return 0; #endif if (!bw_is_finite(coeffs->frequency)) return 0; if (!bw_one_pole_coeffs_is_valid(&coeffs->portamento_coeffs)) return 0; #ifdef BW_DEBUG_DEEP if (coeffs->state >= bw_phase_gen_coeffs_state_set_sample_rate) { if (!bw_is_finite(coeffs->T) || coeffs->T <= 0.f) return 0; } if (coeffs->state >= bw_phase_gen_coeffs_state_reset_coeffs) { if (!bw_is_finite(coeffs->portamento_target) || coeffs->portamento_target < 0.f) return 0; if (!bw_is_finite(coeffs->frequency_prev)) return 0; if (!bw_one_pole_state_is_valid(&coeffs->portamento_coeffs, &coeffs->portamento_state)) return 0; } #endif return 1; } static inline char bw_phase_gen_state_is_valid( const bw_phase_gen_coeffs * BW_RESTRICT coeffs, const bw_phase_gen_state * BW_RESTRICT state) { BW_ASSERT(state != BW_NULL); #ifdef BW_DEBUG_DEEP if (state->hash != bw_hash_sdbm("bw_phase_gen_state")) return 0; if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id) return 0; #endif (void)coeffs; return bw_is_finite(state->phase) && state->phase >= 0.f && state->phase < 1.f; } #ifdef __cplusplus } #ifndef BW_CXX_NO_ARRAY # include #endif namespace Brickworks { /*** Public C++ API ***/ /*! api_cpp {{{ * ##### Brickworks::PhaseGen * ```>>> */ template class PhaseGen { public: PhaseGen(); void setSampleRate( float sampleRate); void reset( float phase0 = 0.f, float * BW_RESTRICT y0 = nullptr, float * BW_RESTRICT yInc0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( float phase0, std::array * BW_RESTRICT y0, std::array * BW_RESTRICT yInc0); #endif void reset( const float * phase0, float * y0 = nullptr, float * yInc0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( std::array phase0, std::array * BW_RESTRICT y0 = nullptr, std::array * BW_RESTRICT yInc0 = nullptr); #endif void process( const float * const * xMod, float * const * y, float * const * yInc, size_t nSamples); #ifndef BW_CXX_NO_ARRAY void process( std::array xMod, std::array y, std::array yInc, size_t nSamples); #endif void setFrequency( float value); void setPortamentoTau( float value); /*! <<<... * } * ``` * }}} */ /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ private: bw_phase_gen_coeffs coeffs; bw_phase_gen_state states[N_CHANNELS]; bw_phase_gen_state * BW_RESTRICT statesP[N_CHANNELS]; }; template inline PhaseGen::PhaseGen() { bw_phase_gen_init(&coeffs); for (size_t i = 0; i < N_CHANNELS; i++) statesP[i] = states + i; } template inline void PhaseGen::setSampleRate( float sampleRate) { bw_phase_gen_set_sample_rate(&coeffs, sampleRate); } template inline void PhaseGen::reset( float phase0, float * BW_RESTRICT y0, float * BW_RESTRICT yInc0) { bw_phase_gen_reset_coeffs(&coeffs); if (y0 != nullptr) { if (yInc0 != nullptr) { for (size_t i = 0; i < N_CHANNELS; i++) bw_phase_gen_reset_state(&coeffs, states + i, phase0, y0 + i, yInc0 + i); } else { for (size_t i = 0; i < N_CHANNELS; i++) { float vInc; bw_phase_gen_reset_state(&coeffs, states + i, phase0, y0 + i, &vInc); } } } else { if (yInc0 != nullptr) { for (size_t i = 0; i < N_CHANNELS; i++) { float v; bw_phase_gen_reset_state(&coeffs, states + i, phase0, &v, yInc0 + i); } } else { for (size_t i = 0; i < N_CHANNELS; i++) { float v, vInc; bw_phase_gen_reset_state(&coeffs, states + i, phase0, &v, &vInc); } } } } #ifndef BW_CXX_NO_ARRAY template inline void PhaseGen::reset( float phase0, std::array * BW_RESTRICT y0, std::array * BW_RESTRICT yInc0) { reset(phase0, y0 != nullptr ? y0->data() : nullptr, yInc0 != nullptr ? yInc0->data() : nullptr); } #endif template inline void PhaseGen::reset( const float * phase0, float * y0, float * yInc0) { bw_phase_gen_reset_coeffs(&coeffs); bw_phase_gen_reset_state_multi(&coeffs, statesP, phase0, y0, yInc0, N_CHANNELS); } #ifndef BW_CXX_NO_ARRAY template inline void PhaseGen::reset( std::array phase0, std::array * BW_RESTRICT y0, std::array * BW_RESTRICT yInc0) { reset(phase0.data(), y0 != nullptr ? y0->data() : nullptr, yInc0 != nullptr ? yInc0->data() : nullptr); } #endif template inline void PhaseGen::process( const float * const * xMod, float * const * y, float * const * yInc, size_t nSamples) { bw_phase_gen_process_multi(&coeffs, statesP, xMod, y, yInc, N_CHANNELS, nSamples); } #ifndef BW_CXX_NO_ARRAY template inline void PhaseGen::process( std::array xMod, std::array y, std::array yInc, size_t nSamples) { process(xMod.data(), y.data(), yInc.data(), nSamples); } #endif template inline void PhaseGen::setFrequency( float value) { bw_phase_gen_set_frequency(&coeffs, value); } template inline void PhaseGen::setPortamentoTau( float value) { bw_phase_gen_set_portamento_tau(&coeffs, value); } } #endif #endif