/* * Brickworks * * Copyright (C) 2023, 2024 Orastron Srl unipersonale * * Brickworks is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3 of the License. * * Brickworks is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Brickworks. If not, see . * * File author: Stefano D'Angelo */ /*! * module_type {{{ dsp }}} * version {{{ 1.1.1 }}} * requires {{{ bw_common bw_gain bw_math bw_mm2 bw_one_pole bw_svf }}} * description {{{ * Second-order peak filter with unitary gain at DC and asymptotically * as frequency increases. * * The quality factor of the underlying bandpass filter can be either * directly controlled via the Q parameter or indirectly through the * bandwidth parameter, which designates the distance in octaves between * midpoint gain frequencies, i.e., frequencies with gain = peak gain / 2 in * dB terms. The use_bandiwdth parameter allows you to choose which * parameterization to use. * }}} * changelog {{{ * * }}} */ #ifndef BW_PEAK_H #define BW_PEAK_H #include #ifdef __cplusplus extern "C" { #endif /*! api {{{ * #### bw_peak_coeffs * ```>>> */ typedef struct bw_peak_coeffs bw_peak_coeffs; /*! <<<``` * Coefficients and related. * * #### bw_peak_state * ```>>> */ typedef struct bw_peak_state bw_peak_state; /*! <<<``` * Internal state and related. * * #### bw_peak_init() * ```>>> */ static inline void bw_peak_init( bw_peak_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Initializes input parameter values in `coeffs`. * * #### bw_peak_set_sample_rate() * ```>>> */ static inline void bw_peak_set_sample_rate( bw_peak_coeffs * BW_RESTRICT coeffs, float sample_rate); /*! <<<``` * Sets the `sample_rate` (Hz) value in `coeffs`. * * #### bw_peak_reset_coeffs() * ```>>> */ static inline void bw_peak_reset_coeffs( bw_peak_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Resets coefficients in `coeffs` to assume their target values. * * #### bw_peak_reset_state() * ```>>> */ static inline float bw_peak_reset_state( const bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT state, float x_0); /*! <<<``` * Resets the given `state` to its initial values using the given `coeffs` * and the initial input value `x_0`. * * Returns the corresponding initial output value. * * #### bw_peak_reset_state_multi() * ```>>> */ static inline void bw_peak_reset_state_multi( const bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels); /*! <<<``` * Resets each of the `n_channels` `state`s to its initial values using the * given `coeffs` and the corresponding initial input value in the `x_0` * array. * * The corresponding initial output values are written into the `y_0` array, * if not `BW_NULL`. * * #### bw_peak_update_coeffs_ctrl() * ```>>> */ static inline void bw_peak_update_coeffs_ctrl( bw_peak_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers control-rate update of coefficients in `coeffs`. * * #### bw_peak_update_coeffs_audio() * ```>>> */ static inline void bw_peak_update_coeffs_audio( bw_peak_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers audio-rate update of coefficients in `coeffs`. * * #### bw_peak_process1() * ```>>> */ static inline float bw_peak_process1( const bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT state, float x); /*! <<<``` * Processes one input sample `x` using `coeffs`, while using and updating * `state`. Returns the corresponding output sample. * * #### bw_peak_process() * ```>>> */ static inline void bw_peak_process( bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the input buffer `x` and fills the * first `n_samples` of the output buffer `y`, while using and updating both * `coeffs` and `state` (control and audio rate). * * #### bw_peak_process_multi() * ```>>> */ static inline void bw_peak_process_multi( bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the `n_channels` input buffers `x` and * fills the first `n_samples` of the `n_channels` output buffers `y`, while * using and updating both the common `coeffs` and each of the `n_channels` * `state`s (control and audio rate). * * #### bw_peak_set_cutoff() * ```>>> */ static inline void bw_peak_set_cutoff( bw_peak_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the cutoff frequency `value` (Hz) in `coeffs`. * * Valid range: [`1e-6f`, `1e12f`]. * * Default value: `1e3f`. * * #### bw_peak_set_Q() * ```>>> */ static inline void bw_peak_set_Q( bw_peak_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the quality factor to the given `value` in `coeffs`. * * Valid range: [`1e-6f`, `1e6f`]. * * Default value: `0.5f`. * * #### bw_peak_set_prewarp_at_cutoff() * ```>>> */ static inline void bw_peak_set_prewarp_at_cutoff( bw_peak_coeffs * BW_RESTRICT coeffs, char value); /*! <<<``` * Sets whether bilinear transform prewarping frequency should match the * cutoff frequency (non-`0`) or not (`0`). * * Default value: non-`0` (on). * * #### bw_peak_set_prewarp_freq() * ```>>> */ static inline void bw_peak_set_prewarp_freq( bw_peak_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the prewarping frequency `value` (Hz) in `coeffs`. * * Only used when the prewarp\_at\_cutoff parameter is off and however * internally limited to avoid instability. * * Valid range: [`1e-6f`, `1e12f`]. * * Default value: `1e3f`. * * #### bw_peak_set_peak_gain_lin() * ```>>> */ static inline void bw_peak_set_peak_gain_lin( bw_peak_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the peak gain parameter to the given `value` (linear gain) in * `coeffs`. * * Valid range: [`1e-30f`, `1e30f`]. * * If actually using the bandwidth parameter to control Q, by the time * `bw_peak_reset_coeffs()`, `bw_peak_update_coeffs_ctrl()`, * `bw_peak_update_coeffs_audio()`, `bw_peak_process1()`, * `bw_peak_process()`, or `bw_peak_process_multi()` is called, * `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain) * * bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`]. * * Default value: `1.f`. * * #### bw_peak_set_peak_gain_dB() * ```>>> */ static inline void bw_peak_set_peak_gain_dB( bw_peak_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the peak gain parameter to the given `value` (dB) in `coeffs`. * * Valid range: [`-600.f`, `600.f`]. * * If actually using the bandwidth parameter to control Q, by the time * `bw_peak_reset_coeffs()`, `bw_peak_update_coeffs_ctrl()`, * `bw_peak_update_coeffs_audio()`, `bw_peak_process1()`, * `bw_peak_process()`, or `bw_peak_process_multi()` is called, * `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain) * * bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`]. * * Default value: `0.f`. * * #### bw_peak_set_bandiwdth() * ```>>> */ static inline void bw_peak_set_bandwidth( bw_peak_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the bandwidth `value` (octaves) in `coeffs`. * * Valid range: [`1e-6f`, `90.f`]. * * If actually using the bandwidth parameter to control Q, by the time * `bw_peak_reset_coeffs()`, `bw_peak_update_coeffs_ctrl()`, * `bw_peak_update_coeffs_audio()`, `bw_peak_process1()`, * `bw_peak_process()`, or `bw_peak_process_multi()` is called, * `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain) * * bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`]. * * Default value: `2.543106606327224f`. * * #### bw_peak_set_use_bandwidth() * ```>>> */ static inline void bw_peak_set_use_bandwidth( bw_peak_coeffs * BW_RESTRICT coeffs, char value); /*! <<<``` * Sets whether the quality factor should be controlled via the bandwidth * parameter (`value` non-`0`) or via the Q parameter (`0`). * * Default value: non-`0` (use bandwidth parameter). * * #### bw_peak_coeffs_is_valid() * ```>>> */ static inline char bw_peak_coeffs_is_valid( const bw_peak_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Tries to determine whether `coeffs` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * `coeffs` must at least point to a readable memory block of size greater * than or equal to that of `bw_peak_coeffs`. * * #### bw_peak_state_is_valid() * ```>>> */ static inline char bw_peak_state_is_valid( const bw_peak_coeffs * BW_RESTRICT coeffs, const bw_peak_state * BW_RESTRICT state); /*! <<<``` * Tries to determine whether `state` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * If `coeffs` is not `BW_NULL` extra cross-checks might be performed * (`state` is supposed to be associated to `coeffs`). * * `state` must at least point to a readable memory block of size greater * than or equal to that of `bw_peak_state`. * }}} */ #ifdef __cplusplus } #endif /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ #include #include #ifdef __cplusplus extern "C" { #endif #ifdef BW_DEBUG_DEEP enum bw_peak_coeffs_state { bw_peak_coeffs_state_invalid, bw_peak_coeffs_state_init, bw_peak_coeffs_state_set_sample_rate, bw_peak_coeffs_state_reset_coeffs }; #endif struct bw_peak_coeffs { #ifdef BW_DEBUG_DEEP uint32_t hash; enum bw_peak_coeffs_state state; uint32_t reset_id; #endif // Sub-components bw_mm2_coeffs mm2_coeffs; // Coefficients float bw_k; // Parameters float Q; float peak_gain; float bandwidth; char use_bandwidth; int param_changed; }; struct bw_peak_state { #ifdef BW_DEBUG_DEEP uint32_t hash; uint32_t coeffs_reset_id; #endif // Sub-components bw_mm2_state mm2_state; }; #define BW_PEAK_PARAM_Q 1 #define BW_PEAK_PARAM_PEAK_GAIN (1<<1) #define BW_PEAK_PARAM_BANDWIDTH (1<<2) static inline void bw_peak_init( bw_peak_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); bw_mm2_init(&coeffs->mm2_coeffs); coeffs->Q = 0.5f; coeffs->peak_gain = 1.f; coeffs->bandwidth = 2.543106606327224f; coeffs->use_bandwidth = 1; coeffs->param_changed = ~0; // useless, just to make compilers happy about uninitialized variables #ifdef BW_DEBUG_DEEP coeffs->hash = bw_hash_sdbm("bw_peak_coeffs"); coeffs->state = bw_peak_coeffs_state_init; coeffs->reset_id = coeffs->hash + 1; #endif BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_init); } static inline void bw_peak_set_sample_rate( bw_peak_coeffs * BW_RESTRICT coeffs, float sample_rate) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f); bw_mm2_set_sample_rate(&coeffs->mm2_coeffs, sample_rate); #ifdef BW_DEBUG_DEEP coeffs->state = bw_peak_coeffs_state_set_sample_rate; #endif BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_set_sample_rate); } static inline void bw_peak_update_mm2_params( bw_peak_coeffs * BW_RESTRICT coeffs) { if (coeffs->param_changed) { if (coeffs->use_bandwidth) { if (coeffs->param_changed & (BW_PEAK_PARAM_PEAK_GAIN | BW_PEAK_PARAM_BANDWIDTH)) { if (coeffs->param_changed & BW_PEAK_PARAM_BANDWIDTH) coeffs->bw_k = bw_pow2f(coeffs->bandwidth); const float Q = bw_sqrtf(coeffs->bw_k * coeffs->peak_gain) * bw_rcpf(coeffs->bw_k - 1.f); bw_mm2_set_Q(&coeffs->mm2_coeffs, Q); bw_mm2_set_coeff_bp(&coeffs->mm2_coeffs, (coeffs->peak_gain - 1.f) * bw_rcpf(Q)); } } else { if (coeffs->param_changed & (BW_PEAK_PARAM_PEAK_GAIN | BW_PEAK_PARAM_Q)) { if (coeffs->param_changed & BW_PEAK_PARAM_Q) bw_mm2_set_Q(&coeffs->mm2_coeffs, coeffs->Q); bw_mm2_set_coeff_bp(&coeffs->mm2_coeffs, (coeffs->peak_gain - 1.f) * bw_rcpf(coeffs->Q)); } } coeffs->param_changed = 0; } } static inline void bw_peak_reset_coeffs( bw_peak_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_set_sample_rate); BW_ASSERT_DEEP(coeffs->use_bandwidth ? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f && bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f : 1); coeffs->param_changed = ~0; bw_peak_update_mm2_params(coeffs); bw_mm2_reset_coeffs(&coeffs->mm2_coeffs); #ifdef BW_DEBUG_DEEP coeffs->state = bw_peak_coeffs_state_reset_coeffs; coeffs->reset_id++; #endif BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_reset_coeffs); } static inline float bw_peak_reset_state( const bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT state, float x_0) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT(bw_is_finite(x_0)); const float y = bw_mm2_reset_state(&coeffs->mm2_coeffs, &state->mm2_state, x_0); #ifdef BW_DEBUG_DEEP state->hash = bw_hash_sdbm("bw_peak_state"); state->coeffs_reset_id = coeffs->reset_id; #endif BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_peak_reset_state_multi( const bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x_0 != BW_NULL); if (y_0 != BW_NULL) for (size_t i = 0; i < n_channels; i++) y_0[i] = bw_peak_reset_state(coeffs, state[i], x_0[i]); else for (size_t i = 0; i < n_channels; i++) bw_peak_reset_state(coeffs, state[i], x_0[i]); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1); } static inline void bw_peak_update_coeffs_ctrl( bw_peak_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(coeffs->use_bandwidth ? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f && bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f : 1); bw_peak_update_mm2_params(coeffs); bw_mm2_update_coeffs_ctrl(&coeffs->mm2_coeffs); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); } static inline void bw_peak_update_coeffs_audio( bw_peak_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(coeffs->use_bandwidth ? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f && bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f : 1); bw_mm2_update_coeffs_audio(&coeffs->mm2_coeffs); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); } static inline float bw_peak_process1( const bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(coeffs->use_bandwidth ? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f && bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f : 1); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); const float y = bw_mm2_process1(&coeffs->mm2_coeffs, &state->mm2_state, x); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_peak_process( bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(coeffs->use_bandwidth ? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f && bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f : 1); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state)); BW_ASSERT(x != BW_NULL); BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples)); BW_ASSERT(y != BW_NULL); bw_peak_update_coeffs_ctrl(coeffs); for (size_t i = 0; i < n_samples; i++) { bw_peak_update_coeffs_audio(coeffs); y[i] = bw_peak_process1(coeffs, state, x[i]); } BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples)); } static inline void bw_peak_process_multi( bw_peak_coeffs * BW_RESTRICT coeffs, bw_peak_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(coeffs->use_bandwidth ? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f && bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f : 1); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x != BW_NULL); BW_ASSERT(y != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(y[i] != y[j]); for (size_t i = 0; i < n_channels; i++) for (size_t j = 0; j < n_channels; j++) BW_ASSERT(i == j || x[i] != y[j]); #endif bw_peak_update_coeffs_ctrl(coeffs); for (size_t i = 0; i < n_samples; i++) { bw_peak_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) y[j][i] = bw_peak_process1(coeffs, state[j], x[j][i]); } BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs); } static inline void bw_peak_set_cutoff( bw_peak_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-6f && value <= 1e12f); bw_mm2_set_cutoff(&coeffs->mm2_coeffs, value); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); } static inline void bw_peak_set_Q( bw_peak_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-6f && value <= 1e6f); if (coeffs->Q != value) { coeffs->Q = value; coeffs->param_changed |= BW_PEAK_PARAM_Q; } BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); } static inline void bw_peak_set_prewarp_at_cutoff( bw_peak_coeffs * BW_RESTRICT coeffs, char value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); bw_mm2_set_prewarp_at_cutoff(&coeffs->mm2_coeffs, value); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); } static inline void bw_peak_set_prewarp_freq( bw_peak_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-6f && value <= 1e12f); bw_mm2_set_prewarp_freq(&coeffs->mm2_coeffs, value); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); } static inline void bw_peak_set_peak_gain_lin( bw_peak_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-30f && value <= 1e30f); if (coeffs->peak_gain != value) { coeffs->peak_gain = value; coeffs->param_changed |= BW_PEAK_PARAM_PEAK_GAIN; } BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); } static inline void bw_peak_set_peak_gain_dB( bw_peak_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= -600.f && value <= 600.f); bw_peak_set_peak_gain_lin(coeffs, bw_dB2linf(value)); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); } static inline void bw_peak_set_bandwidth( bw_peak_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-6f && value <= 90.f); if (coeffs->bandwidth != value) { coeffs->bandwidth = value; coeffs->param_changed |= BW_PEAK_PARAM_BANDWIDTH; } BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); } static inline void bw_peak_set_use_bandwidth( bw_peak_coeffs * BW_RESTRICT coeffs, char value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); if ((coeffs->use_bandwidth && !value) || (!coeffs->use_bandwidth && value)) { coeffs->use_bandwidth = value; coeffs->param_changed |= BW_PEAK_PARAM_Q | BW_PEAK_PARAM_BANDWIDTH; } BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init); } static inline char bw_peak_coeffs_is_valid( const bw_peak_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); #ifdef BW_DEBUG_DEEP if (coeffs->hash != bw_hash_sdbm("bw_peak_coeffs")) return 0; if (coeffs->state < bw_peak_coeffs_state_init || coeffs->state > bw_peak_coeffs_state_reset_coeffs) return 0; #endif if (!bw_is_finite(coeffs->Q) || coeffs->Q < 1e-6f || coeffs->Q > 1e6f) return 0; if (!bw_is_finite(coeffs->peak_gain) || coeffs->peak_gain < 1e-30f || coeffs->peak_gain > 1e30f) return 0; if (!bw_is_finite(coeffs->bandwidth) || coeffs->bandwidth < 1e-6f || coeffs->bandwidth > 90.f) return 0; #ifdef BW_DEBUG_DEEP if (coeffs->state >= bw_peak_coeffs_state_reset_coeffs) { if (!bw_is_finite(coeffs->bw_k) || coeffs->bw_k <= 0.f) return 0; } #endif return bw_mm2_coeffs_is_valid(&coeffs->mm2_coeffs); } static inline char bw_peak_state_is_valid( const bw_peak_coeffs * BW_RESTRICT coeffs, const bw_peak_state * BW_RESTRICT state) { BW_ASSERT(state != BW_NULL); #ifdef BW_DEBUG_DEEP if (state->hash != bw_hash_sdbm("bw_peak_state")) return 0; if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id) return 0; #endif return bw_mm2_state_is_valid(coeffs ? &coeffs->mm2_coeffs : BW_NULL, &state->mm2_state); } #undef BW_PEAK_PARAM_Q #undef BW_PEAK_PARAM_PEAK_GAIN #undef BW_PEAK_PARAM_BANDWIDTH #ifdef __cplusplus } #ifndef BW_CXX_NO_ARRAY # include #endif namespace Brickworks { /*** Public C++ API ***/ /*! api_cpp {{{ * ##### Brickworks::Peak * ```>>> */ template class Peak { public: Peak(); void setSampleRate( float sampleRate); void reset( float x0 = 0.f, float * BW_RESTRICT y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( float x0, std::array * BW_RESTRICT y0); #endif void reset( const float * x0, float * y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( std::array x0, std::array * BW_RESTRICT y0 = nullptr); #endif void process( const float * const * x, float * const * y, size_t nSamples); #ifndef BW_CXX_NO_ARRAY void process( std::array x, std::array y, size_t nSamples); #endif void setCutoff( float value); void setQ( float value); void setPrewarpAtCutoff( bool value); void setPrewarpFreq( float value); void setPeakGainLin( float value); void setPeakGainDB( float value); void setBandwidth( float value); void setUseBandwidth( bool value); /*! <<<... * } * ``` * }}} */ /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ private: bw_peak_coeffs coeffs; bw_peak_state states[N_CHANNELS]; bw_peak_state * BW_RESTRICT statesP[N_CHANNELS]; }; template inline Peak::Peak() { bw_peak_init(&coeffs); for (size_t i = 0; i < N_CHANNELS; i++) statesP[i] = states + i; } template inline void Peak::setSampleRate( float sampleRate) { bw_peak_set_sample_rate(&coeffs, sampleRate); } template inline void Peak::reset( float x0, float * BW_RESTRICT y0) { bw_peak_reset_coeffs(&coeffs); if (y0 != nullptr) for (size_t i = 0; i < N_CHANNELS; i++) y0[i] = bw_peak_reset_state(&coeffs, states + i, x0); else for (size_t i = 0; i < N_CHANNELS; i++) bw_peak_reset_state(&coeffs, states + i, x0); } #ifndef BW_CXX_NO_ARRAY template inline void Peak::reset( float x0, std::array * BW_RESTRICT y0) { reset(x0, y0 != nullptr ? y0->data() : y0); } #endif template inline void Peak::reset( const float * x0, float * y0) { bw_peak_reset_coeffs(&coeffs); bw_peak_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS); } #ifndef BW_CXX_NO_ARRAY template inline void Peak::reset( std::array x0, std::array * BW_RESTRICT y0) { reset(x0.data(), y0 != nullptr ? y0->data() : nullptr); } #endif template inline void Peak::process( const float * const * x, float * const * y, size_t nSamples) { bw_peak_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples); } #ifndef BW_CXX_NO_ARRAY template inline void Peak::process( std::array x, std::array y, size_t nSamples) { process(x.data(), y.data(), nSamples); } #endif template inline void Peak::setCutoff( float value) { bw_peak_set_cutoff(&coeffs, value); } template inline void Peak::setQ( float value) { bw_peak_set_Q(&coeffs, value); } template inline void Peak::setPrewarpAtCutoff( bool value) { bw_peak_set_prewarp_at_cutoff(&coeffs, value); } template inline void Peak::setPrewarpFreq( float value) { bw_peak_set_prewarp_freq(&coeffs, value); } template inline void Peak::setPeakGainLin( float value) { bw_peak_set_peak_gain_lin(&coeffs, value); } template inline void Peak::setPeakGainDB( float value) { bw_peak_set_peak_gain_dB(&coeffs, value); } template inline void Peak::setBandwidth( float value) { bw_peak_set_bandwidth(&coeffs, value); } template inline void Peak::setUseBandwidth( bool value) { bw_peak_set_use_bandwidth(&coeffs, value); } } #endif #endif