/* * Brickworks * * Copyright (C) 2022-2024 Orastron Srl unipersonale * * Brickworks is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3 of the License. * * Brickworks is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Brickworks. If not, see . * * File author: Stefano D'Angelo */ /*! * module_type {{{ dsp }}} * version {{{ 1.1.1 }}} * requires {{{ bw_common bw_math bw_one_pole bw_svf }}} * description {{{ * Second-order notch filter with unitary gain at DC and asymptotically as * frequency increases, and null gain at cutoff frequency. * }}} * changelog {{{ * * }}} */ #ifndef BW_NOTCH_H #define BW_NOTCH_H #include #ifdef __cplusplus extern "C" { #endif /*! api {{{ * #### bw_notch_coeffs * ```>>> */ typedef struct bw_notch_coeffs bw_notch_coeffs; /*! <<<``` * Coefficients and related. * * #### bw_notch_state * ```>>> */ typedef struct bw_notch_state bw_notch_state; /*! <<<``` * Internal state and related. * * #### bw_notch_init() * ```>>> */ static inline void bw_notch_init( bw_notch_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Initializes input parameter values in `coeffs`. * * #### bw_notch_set_sample_rate() * ```>>> */ static inline void bw_notch_set_sample_rate( bw_notch_coeffs * BW_RESTRICT coeffs, float sample_rate); /*! <<<``` * Sets the `sample_rate` (Hz) value in `coeffs`. * * #### bw_notch_reset_coeffs() * ```>>> */ static inline void bw_notch_reset_coeffs( bw_notch_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Resets coefficients in `coeffs` to assume their target values. * * #### bw_notch_reset_state() * ```>>> */ static inline float bw_notch_reset_state( const bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT state, float x_0); /*! <<<``` * Resets the given `state` to its initial values using the given `coeffs` * and the initial input value `x_0`. * * Returns the corresponding initial output value. * * #### bw_notch_reset_state_multi() * ```>>> */ static inline void bw_notch_reset_state_multi( const bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels); /*! <<<``` * Resets each of the `n_channels` `state`s to its initial values using the * given `coeffs` and the corresponding initial input value in the `x_0` * array. * * The corresponding initial output values are written into the `y_0` array, * if not `BW_NULL`. * * #### bw_notch_update_coeffs_ctrl() * ```>>> */ static inline void bw_notch_update_coeffs_ctrl( bw_notch_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers control-rate update of coefficients in `coeffs`. * * #### bw_notch_update_coeffs_audio() * ```>>> */ static inline void bw_notch_update_coeffs_audio( bw_notch_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers audio-rate update of coefficients in `coeffs`. * * #### bw_notch_process1() * ```>>> */ static inline float bw_notch_process1( const bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT state, float x); /*! <<<``` * Processes one input sample `x` using `coeffs`, while using and updating * `state`. Returns the corresponding output sample. * * #### bw_notch_process() * ```>>> */ static inline void bw_notch_process( bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the input buffer `x` and fills the * first `n_samples` of the output buffer `y`, while using and updating both * `coeffs` and `state` (control and audio rate). * * #### bw_notch_process_multi() * ```>>> */ static inline void bw_notch_process_multi( bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the `n_channels` input buffers `x` and * fills the first `n_samples` of the `n_channels` output buffers `y`, while * using and updating both the common `coeffs` and each of the `n_channels` * `state`s (control and audio rate). * * #### bw_notch_set_cutoff() * ```>>> */ static inline void bw_notch_set_cutoff( bw_notch_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the cutoff frequency `value` (Hz) in `coeffs`. * * Valid range: [`1e-6f`, `1e12f`]. * * Default value: `1e3f`. * * #### bw_notch_set_Q() * ```>>> */ static inline void bw_notch_set_Q( bw_notch_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the quality factor to the given `value` in `coeffs`. * * Valid range: [`1e-6f`, `1e6f`]. * * Default value: `0.5f`. * * #### bw_notch_set_prewarp_at_cutoff() * ```>>> */ static inline void bw_notch_set_prewarp_at_cutoff( bw_notch_coeffs * BW_RESTRICT coeffs, char value); /*! <<<``` * Sets whether bilinear transform prewarping frequency should match the * cutoff frequency (non-`0`) or not (`0`). * * Default value: non-`0` (on). * * #### bw_notch_set_prewarp_freq() * ```>>> */ static inline void bw_notch_set_prewarp_freq( bw_notch_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the prewarping frequency `value` (Hz) in `coeffs`. * * Only used when the prewarp\_at\_cutoff parameter is off and however * internally limited to avoid instability. * * Valid range: [`1e-6f`, `1e12f`]. * * Default value: `1e3f`. * * #### bw_notch_coeffs_is_valid() * ```>>> */ static inline char bw_notch_coeffs_is_valid( const bw_notch_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Tries to determine whether `coeffs` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * `coeffs` must at least point to a readable memory block of size greater * than or equal to that of `bw_notch_coeffs`. * * #### bw_notch_state_is_valid() * ```>>> */ static inline char bw_notch_state_is_valid( const bw_notch_coeffs * BW_RESTRICT coeffs, const bw_notch_state * BW_RESTRICT state); /*! <<<``` * Tries to determine whether `state` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * If `coeffs` is not `BW_NULL` extra cross-checks might be performed * (`state` is supposed to be associated to `coeffs`). * * `state` must at least point to a readable memory block of size greater * than or equal to that of `bw_notch_state`. * }}} */ #ifdef __cplusplus } #endif /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ #include #ifdef __cplusplus extern "C" { #endif #ifdef BW_DEBUG_DEEP enum bw_notch_coeffs_state { bw_notch_coeffs_state_invalid, bw_notch_coeffs_state_init, bw_notch_coeffs_state_set_sample_rate, bw_notch_coeffs_state_reset_coeffs }; #endif struct bw_notch_coeffs { #ifdef BW_DEBUG_DEEP uint32_t hash; enum bw_notch_coeffs_state state; uint32_t reset_id; #endif // Sub-components bw_svf_coeffs svf_coeffs; }; struct bw_notch_state { #ifdef BW_DEBUG_DEEP uint32_t hash; uint32_t coeffs_reset_id; #endif // Sub-components bw_svf_state svf_state; }; static inline void bw_notch_init( bw_notch_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); bw_svf_init(&coeffs->svf_coeffs); #ifdef BW_DEBUG_DEEP coeffs->hash = bw_hash_sdbm("bw_notch_coeffs"); coeffs->state = bw_notch_coeffs_state_init; coeffs->reset_id = coeffs->hash + 1; #endif BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_notch_coeffs_state_init); } static inline void bw_notch_set_sample_rate( bw_notch_coeffs * BW_RESTRICT coeffs, float sample_rate) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f); bw_svf_set_sample_rate(&coeffs->svf_coeffs, sample_rate); #ifdef BW_DEBUG_DEEP coeffs->state = bw_notch_coeffs_state_set_sample_rate; #endif BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_notch_coeffs_state_set_sample_rate); } static inline void bw_notch_reset_coeffs( bw_notch_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_set_sample_rate); bw_svf_reset_coeffs(&coeffs->svf_coeffs); #ifdef BW_DEBUG_DEEP coeffs->state = bw_notch_coeffs_state_reset_coeffs; coeffs->reset_id++; #endif BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_notch_coeffs_state_reset_coeffs); } static inline float bw_notch_reset_state( const bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT state, float x_0) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT(bw_is_finite(x_0)); float lp, bp, hp; bw_svf_reset_state(&coeffs->svf_coeffs, &state->svf_state, x_0, &lp, &bp, &hp); const float y = lp + hp; #ifdef BW_DEBUG_DEEP state->hash = bw_hash_sdbm("bw_notch_state"); state->coeffs_reset_id = coeffs->reset_id; #endif BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_notch_reset_state_multi( const bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x_0 != BW_NULL); if (y_0 != BW_NULL) for (size_t i = 0; i < n_channels; i++) y_0[i] = bw_notch_reset_state(coeffs, state[i], x_0[i]); else for (size_t i = 0; i < n_channels; i++) bw_notch_reset_state(coeffs, state[i], x_0[i]); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1); } static inline void bw_notch_update_coeffs_ctrl( bw_notch_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); bw_svf_update_coeffs_ctrl(&coeffs->svf_coeffs); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); } static inline void bw_notch_update_coeffs_audio( bw_notch_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); bw_svf_update_coeffs_audio(&coeffs->svf_coeffs); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); } static inline float bw_notch_process1( const bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); float lp, bp, hp; bw_svf_process1(&coeffs->svf_coeffs, &state->svf_state, x, &lp, &bp, &hp); const float y = lp + hp; BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_notch_process( bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state)); BW_ASSERT(x != BW_NULL); BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples)); BW_ASSERT(y != BW_NULL); bw_notch_update_coeffs_ctrl(coeffs); for (size_t i = 0; i < n_samples; i++) { bw_notch_update_coeffs_audio(coeffs); y[i] = bw_notch_process1(coeffs, state, x[i]); } BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples)); } static inline void bw_notch_process_multi( bw_notch_coeffs * BW_RESTRICT coeffs, bw_notch_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x != BW_NULL); BW_ASSERT(y != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(y[i] != y[j]); for (size_t i = 0; i < n_channels; i++) for (size_t j = 0; j < n_channels; j++) BW_ASSERT(i == j || x[i] != y[j]); #endif bw_notch_update_coeffs_ctrl(coeffs); for (size_t i = 0; i < n_samples; i++) { bw_notch_update_coeffs_audio(coeffs); for (size_t j = 0; j < n_channels; j++) y[j][i] = bw_notch_process1(coeffs, state[j], x[j][i]); } BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs); } static inline void bw_notch_set_cutoff( bw_notch_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-6f && value <= 1e12f); bw_svf_set_cutoff(&coeffs->svf_coeffs, value); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); } static inline void bw_notch_set_Q( bw_notch_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-6f && value <= 1e6f); bw_svf_set_Q(&coeffs->svf_coeffs, value); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); } static inline void bw_notch_set_prewarp_at_cutoff( bw_notch_coeffs * BW_RESTRICT coeffs, char value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); bw_svf_set_prewarp_at_cutoff(&coeffs->svf_coeffs, value); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); } static inline void bw_notch_set_prewarp_freq( bw_notch_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); BW_ASSERT(bw_is_finite(value)); BW_ASSERT(value >= 1e-6f && value <= 1e12f); bw_svf_set_prewarp_freq(&coeffs->svf_coeffs, value); BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init); } static inline char bw_notch_coeffs_is_valid( const bw_notch_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); #ifdef BW_DEBUG_DEEP if (coeffs->hash != bw_hash_sdbm("bw_notch_coeffs")) return 0; if (coeffs->state < bw_notch_coeffs_state_init || coeffs->state > bw_notch_coeffs_state_reset_coeffs) return 0; #endif return bw_svf_coeffs_is_valid(&coeffs->svf_coeffs); } static inline char bw_notch_state_is_valid( const bw_notch_coeffs * BW_RESTRICT coeffs, const bw_notch_state * BW_RESTRICT state) { BW_ASSERT(state != BW_NULL); #ifdef BW_DEBUG_DEEP if (state->hash != bw_hash_sdbm("bw_notch_state")) return 0; if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id) return 0; #endif return bw_svf_state_is_valid(coeffs ? &coeffs->svf_coeffs : BW_NULL, &state->svf_state); } #ifdef __cplusplus } #ifndef BW_CXX_NO_ARRAY # include #endif namespace Brickworks { /*** Public C++ API ***/ /*! api_cpp {{{ * ##### Brickworks::Notch * ```>>> */ template class Notch { public: Notch(); void setSampleRate( float sampleRate); void reset( float x0 = 0.f, float * BW_RESTRICT y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( float x0, std::array * BW_RESTRICT y0); #endif void reset( const float * x0, float * y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( std::array x0, std::array * BW_RESTRICT y0 = nullptr); #endif void process( const float * const * x, float * const * y, size_t nSamples); #ifndef BW_CXX_NO_ARRAY void process( std::array x, std::array y, size_t nSamples); #endif void setCutoff( float value); void setQ( float value); void setPrewarpAtCutoff( bool value); void setPrewarpFreq( float value); /*! <<<... * } * ``` * }}} */ /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ private: bw_notch_coeffs coeffs; bw_notch_state states[N_CHANNELS]; bw_notch_state * BW_RESTRICT statesP[N_CHANNELS]; }; template inline Notch::Notch() { bw_notch_init(&coeffs); for (size_t i = 0; i < N_CHANNELS; i++) statesP[i] = states + i; } template inline void Notch::setSampleRate( float sampleRate) { bw_notch_set_sample_rate(&coeffs, sampleRate); } template inline void Notch::reset( float x0, float * BW_RESTRICT y0) { bw_notch_reset_coeffs(&coeffs); if (y0 != nullptr) for (size_t i = 0; i < N_CHANNELS; i++) y0[i] = bw_notch_reset_state(&coeffs, states + i, x0); else for (size_t i = 0; i < N_CHANNELS; i++) bw_notch_reset_state(&coeffs, states + i, x0); } #ifndef BW_CXX_NO_ARRAY template inline void Notch::reset( float x0, std::array * BW_RESTRICT y0) { reset(x0, y0 != nullptr ? y0->data() : nullptr); } #endif template inline void Notch::reset( const float * x0, float * y0) { bw_notch_reset_coeffs(&coeffs); bw_notch_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS); } #ifndef BW_CXX_NO_ARRAY template inline void Notch::reset( std::array x0, std::array * BW_RESTRICT y0) { reset(x0.data(), y0 != nullptr ? y0->data() : nullptr); } #endif template inline void Notch::process( const float * const * x, float * const * y, size_t nSamples) { bw_notch_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples); } #ifndef BW_CXX_NO_ARRAY template inline void Notch::process( std::array x, std::array y, size_t nSamples) { process(x.data(), y.data(), nSamples); } #endif template inline void Notch::setCutoff( float value) { bw_notch_set_cutoff(&coeffs, value); } template inline void Notch::setQ( float value) { bw_notch_set_Q(&coeffs, value); } template inline void Notch::setPrewarpAtCutoff( bool value) { bw_notch_set_prewarp_at_cutoff(&coeffs, value); } template inline void Notch::setPrewarpFreq( float value) { bw_notch_set_prewarp_freq(&coeffs, value); } } #endif #endif