/* * Brickworks * * Copyright (C) 2023 Orastron Srl unipersonale * * Brickworks is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3 of the License. * * Brickworks is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Brickworks. If not, see . * * File author: Stefano D'Angelo */ /*! * module_type {{{ dsp }}} * version {{{ 1.0.0 }}} * requires {{{ bw_buf bw_common bw_math }}} * description {{{ * Interpolated delay line, not smoothed. * * You can either use the usual API for updating coefficients and processing * signals or you can directly write and read from the delay line which, * for example, allows you to implement smoothing and multi-tap output. * }}} * changelog {{{ * * }}} */ #ifndef BW_DELAY_H #define BW_DELAY_H #include #ifdef __cplusplus extern "C" { #endif /*! api {{{ * #### bw_delay_coeffs * ```>>> */ typedef struct bw_delay_coeffs bw_delay_coeffs; /*! <<<``` * Coefficients and related. * * #### bw_delay_state * ```>>> */ typedef struct bw_delay_state bw_delay_state; /*! <<<``` * Internal state and related. * * #### bw_delay_init() * ```>>> */ static inline void bw_delay_init(bw_delay_coeffs *BW_RESTRICT coeffs, float max_delay); /*! <<<``` * Initializes input parameter values in `coeffs` using `max_delay` (s) as * the maximum delay time. * * #### bw_delay_set_sample_rate() * ```>>> */ static inline void bw_delay_set_sample_rate(bw_delay_coeffs *BW_RESTRICT coeffs, float sample_rate); /*! <<<``` * Sets the `sample_rate` (Hz) value in `coeffs`. * * #### bw_delay_mem_req() * ```>>> */ static inline size_t bw_delay_mem_req(const bw_delay_coeffs *BW_RESTRICT coeffs); /*! <<<``` * Returns the size, in bytes, of contiguous memory to be supplied to * `bw_delay_mem_set()` using `coeffs`. * * #### bw_delay_mem_set() * ```>>> */ static inline void bw_delay_mem_set(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, void *mem); /*! <<<``` * Associates the contiguous memory block `mem` to the given `state`. * * #### bw_delay_reset_coeffs() * ```>>> */ static inline void bw_delay_reset_coeffs(bw_delay_coeffs *BW_RESTRICT coeffs); /*! <<<``` * Resets coefficients in `coeffs` to assume their target values. * * #### bw_delay_reset_state() * ```>>> */ static inline void bw_delay_reset_state(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state); /*! <<<``` * Resets the given `state` to its initial values using the given `coeffs`. * * #### bw_delay_read() * ```>>> */ static float bw_delay_read(const bw_delay_coeffs *BW_RESTRICT coeffs, const bw_delay_state *BW_RESTRICT state, size_t di, float df); /*! <<<``` * Returns the interpolated value read from the delay line identified by * `coeffs` and `state` by applying a delay of `di` + `df` samples. * * `df` must be in [`0.f`, `1.f`) and `di` + `df` must not exceed the delay * line length (maximum delay times the sample rate). * * #### bw_delay_write() * ```>>> */ static void bw_delay_write(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, float x); /*! <<<``` * Pushes the new sample `x` on the delay line identified by `coeffs` and * `state`. * * #### bw_delay_update_coeffs_ctrl() * ```>>> */ static inline void bw_delay_update_coeffs_ctrl(bw_delay_coeffs *BW_RESTRICT coeffs); /*! <<<``` * Triggers control-rate update of coefficients in `coeffs`. * * #### bw_delay_update_coeffs_audio() * ```>>> */ static inline void bw_delay_update_coeffs_audio(bw_delay_coeffs *BW_RESTRICT coeffs); /*! <<<``` * Triggers audio-rate update of coefficients in `coeffs`. * * #### bw_delay_process1() * ```>>> */ static inline float bw_delay_process1(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, float x); /*! <<<``` * Processes one input sample `x` using `coeffs`, while using and updating * `state`. Returns the corresponding output sample. * * #### bw_delay_process() * ```>>> */ static inline void bw_delay_process(bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, const float *x, float *y, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the input buffer `x` and fills the * first `n_samples` of the output buffer `y`, while using and updating both * `coeffs` and `state` (control and audio rate). * * #### bw_delay_process_multi() * ```>>> */ static inline void bw_delay_process_multi(bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state * const *BW_RESTRICT state, const float * const *x, float **y, size_t n_channels, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the `n_channels` input buffers `x` and * fills the first `n_samples` of the `n_channels` output buffers `y`, while * using and updating both the common `coeffs` and each of the `n_channels` * `state`s (control and audio rate). * * #### bw_delay_set_delay() * ```>>> */ static inline void bw_delay_set_delay(bw_delay_coeffs *BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the delay time `value` (s) in `coeffs`. * * Default value: `0.f`. * * #### bw_delay_get_length() * ```>>> */ static inline size_t bw_delay_get_length(const bw_delay_coeffs *BW_RESTRICT coeffs); /*! <<<``` * Returns the length of the delay line in samples. * }}} */ #ifdef __cplusplus } #endif /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ #include #include #ifdef __cplusplus extern "C" { #endif struct bw_delay_coeffs { // Coefficients float fs; size_t len; size_t di; float df; // Parameters float max_delay; float delay; char delay_changed; }; struct bw_delay_state { float *buf; size_t idx; }; static inline void bw_delay_init(bw_delay_coeffs *BW_RESTRICT coeffs, float max_delay) { coeffs->max_delay = max_delay; coeffs->delay = 0.f; } static inline void bw_delay_set_sample_rate(bw_delay_coeffs *BW_RESTRICT coeffs, float sample_rate) { coeffs->fs = sample_rate; coeffs->len = (size_t)bw_ceilf(coeffs->fs * coeffs->max_delay) + 1; } static inline size_t bw_delay_mem_req(const bw_delay_coeffs *BW_RESTRICT coeffs) { return coeffs->len * sizeof(float); } static inline void bw_delay_mem_set(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, void *mem) { (void)coeffs; state->buf = (float *)mem; } static inline void bw_delay_reset_coeffs(bw_delay_coeffs *BW_RESTRICT coeffs) { coeffs->delay_changed = 1; bw_delay_update_coeffs_ctrl(coeffs); } static inline void bw_delay_reset_state(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state) { bw_buf_fill(0.f, state->buf, coeffs->len); state->idx = 0; } static float bw_delay_read(const bw_delay_coeffs *BW_RESTRICT coeffs, const bw_delay_state *BW_RESTRICT state, size_t di, float df) { const size_t n = (state->idx + (state->idx >= di ? 0 : coeffs->len)) - di; const size_t p = (n ? n : coeffs->len) - 1; return state->buf[n] + df * (state->buf[p] - state->buf[n]); } static void bw_delay_write(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, float x) { state->idx++; state->idx = state->idx == coeffs->len ? 0 : state->idx; state->buf[state->idx] = x; } static inline void bw_delay_update_coeffs_ctrl(bw_delay_coeffs *BW_RESTRICT coeffs) { if (coeffs->delay_changed) { float i; bw_intfracf(coeffs->fs * coeffs->delay, &i, &coeffs->df); coeffs->di = (size_t)i; coeffs->delay_changed = 0; } } static inline void bw_delay_update_coeffs_audio(bw_delay_coeffs *BW_RESTRICT coeffs) { (void)coeffs; } static inline float bw_delay_process1(const bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, float x) { bw_delay_write(coeffs, state, x); return bw_delay_read(coeffs, state, coeffs->di, coeffs->df); } static inline void bw_delay_process(bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state *BW_RESTRICT state, const float *x, float *y, size_t n_samples) { bw_delay_update_coeffs_ctrl(coeffs); for (size_t i = 0; i < n_samples; i++) y[i] = bw_delay_process1(coeffs, state, x[i]); } static inline void bw_delay_process_multi(bw_delay_coeffs *BW_RESTRICT coeffs, bw_delay_state * const *BW_RESTRICT state, const float * const *x, float **y, size_t n_channels, size_t n_samples) { bw_delay_update_coeffs_ctrl(coeffs); for (size_t i = 0; i < n_samples; i++) for (size_t j = 0; j < n_channels; j++) y[j][i] = bw_delay_process1(coeffs, state[j], x[j][i]); } static inline void bw_delay_set_delay(bw_delay_coeffs *BW_RESTRICT coeffs, float value) { if (value != coeffs->delay) { coeffs->delay = value; coeffs->delay_changed = 1; } } static inline size_t bw_delay_get_length(const bw_delay_coeffs *BW_RESTRICT coeffs) { return coeffs->len; } #ifdef __cplusplus } #include namespace Brickworks { /*** Public C++ API ***/ /*! api_cpp {{{ * ##### Brickworks::Delay * ```>>> */ template class Delay { public: Delay(float maxDelay = 1.f); ~Delay(); void setSampleRate(float sampleRate); void reset(); void process( const float * const *x, float **y, size_t nSamples); void process( std::array x, std::array y, size_t nSamples); float read(size_t channel, size_t di, float df); void write(size_t channel, float x); void setDelay(float value); size_t getLength(); /*! <<<... * } * ``` * }}} */ /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ private: bw_delay_coeffs coeffs; bw_delay_state states[N_CHANNELS]; bw_delay_state *statesP[N_CHANNELS]; void *mem; }; template inline Delay::Delay(float maxDelay) { bw_delay_init(&coeffs, maxDelay); for (size_t i = 0; i < N_CHANNELS; i++) statesP[i] = states + i; mem = nullptr; } template inline Delay::~Delay() { if (mem != nullptr) operator delete(mem); } template inline void Delay::setSampleRate(float sampleRate) { bw_delay_set_sample_rate(&coeffs, sampleRate); size_t req = bw_delay_mem_req(&coeffs); if (mem != nullptr) operator delete(mem); mem = operator new(req * N_CHANNELS); void *m = mem; for (size_t i = 0; i < N_CHANNELS; i++, m = static_cast(m) + req) bw_delay_mem_set(&coeffs, states + i, m); } template inline void Delay::reset() { bw_delay_reset_coeffs(&coeffs); for (size_t i = 0; i < N_CHANNELS; i++) bw_delay_reset_state(&coeffs, states + i); } template inline void Delay::process( const float * const *x, float **y, size_t nSamples) { bw_delay_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples); } template inline void Delay::process( std::array x, std::array y, size_t nSamples) { process(x.data(), y.data(), nSamples); } template inline float Delay::read(size_t channel, size_t di, float df) { return bw_delay_read(&coeffs, states + channel, di, df); } template inline void Delay::write(size_t channel, float x) { bw_delay_write(&coeffs, states + channel, x); } template inline void Delay::setDelay(float value) { bw_delay_set_delay(&coeffs, value); } template inline size_t Delay::getLength() { return bw_delay_get_length(&coeffs); } } #endif #endif