/* * Brickworks * * Copyright (C) 2022-2024 Orastron Srl unipersonale * * Brickworks is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3 of the License. * * Brickworks is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Brickworks. If not, see . * * File author: Stefano D'Angelo */ /*! * module_type {{{ dsp }}} * version {{{ 1.1.0 }}} * requires {{{ bw_common bw_math }}} * description {{{ * One-pole (6 dB/oct) lowpass filter with unitary DC gain, separate attack * and decay time constants, and sticky target-reach threshold. * * This is better suited to implement smoothing than [bw_lp1](bw_lp1). * }}} * changelog {{{ * * }}} */ #ifndef BW_ONE_POLE_H #define BW_ONE_POLE_H #include #ifdef __cplusplus extern "C" { #endif /*** Public API ***/ /*! api {{{ * #### bw_one_pole_coeffs * ```>>> */ typedef struct bw_one_pole_coeffs bw_one_pole_coeffs; /*! <<<``` * Coefficients and related. * * #### bw_one_pole_state * ```>>> */ typedef struct bw_one_pole_state bw_one_pole_state; /*! <<<``` * Internal state and related. * * #### bw_one_pole_sticky_mode * ```>>> */ typedef enum { bw_one_pole_sticky_mode_abs, bw_one_pole_sticky_mode_rel } bw_one_pole_sticky_mode; /*! <<<``` * Distance metrics for sticky behavior: * * `bw_one_pole_sticky_mode_abs`: absolute difference (|`out` - `in`|); * * `bw_one_pole_sticky_mode_rel`: relative difference with respect to * input (|`out` - `in`| / |`in`|). * * #### bw_one_pole_init() * ```>>> */ static inline void bw_one_pole_init( bw_one_pole_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Initializes input parameter values in `coeffs`. * * #### bw_one_pole_set_sample_rate() * ```>>> */ static inline void bw_one_pole_set_sample_rate( bw_one_pole_coeffs * BW_RESTRICT coeffs, float sample_rate); /*! <<<``` * Sets the `sample_rate` (Hz) value in `coeffs`. * * #### bw_one_pole_reset_coeffs() * ```>>> */ static inline void bw_one_pole_reset_coeffs( bw_one_pole_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Resets coefficients in `coeffs` to assume their target values. * * #### bw_one_pole_reset_state() * ```>>> */ static inline float bw_one_pole_reset_state( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x_0); /*! <<<``` * Resets the given `state` to its initial values using the given `coeffs` * and the initial input value `x_0`. * * Returns the corresponding initial output value. * * #### bw_one_pole_reset_state_multi() * ```>>> */ static inline void bw_one_pole_reset_state_multi( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels); /*! <<<``` * Resets each of the `n_channels` `state`s to its initial values using the * given `coeffs` and the corresponding initial input value in the `x_0` * array. * * The corresponding initial output values are written into the * `y_0` array, if not `BW_NULL`. * * #### bw_one_pole_update_coeffs_ctrl() * ```>>> */ static inline void bw_one_pole_update_coeffs_ctrl( bw_one_pole_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers control-rate update of coefficients in `coeffs`. * * #### bw_one_pole_update_coeffs_audio() * ```>>> */ static inline void bw_one_pole_update_coeffs_audio( bw_one_pole_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Triggers audio-rate update of coefficients in `coeffs`. * * #### bw_one_pole_process1\*() * ```>>> */ static inline float bw_one_pole_process1( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x); static inline float bw_one_pole_process1_sticky_abs( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x); static inline float bw_one_pole_process1_sticky_rel( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x); static inline float bw_one_pole_process1_asym( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x); static inline float bw_one_pole_process1_asym_sticky_abs( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x); static inline float bw_one_pole_process1_asym_sticky_rel( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x); /*! <<<``` * These functions process one input sample `x` using `coeffs`, while using * and updating `state`. They return the corresponding output sample. * * In particular: * * `bw_one_pole_process1()` assumes that upgoing and downgoing cutoff/tau * are equal and the target-reach threshold is `0.f`; * * `bw_one_pole_process1_sticky_abs()` assumes that upgoing and downgoing * cutoff/tau are equal, that the target-reach threshold is not `0.f`, * and that the distance metric for sticky behavior is set to * `bw_one_pole_sticky_mode_abs`; * * `bw_one_pole_process1_sticky_rel()` assumes that upgoing and downgoing * cutoff/tau are equal, that the target-reach threshold is not `0.f`, * and that the distance metric for sticky behavior is set to * `bw_one_pole_sticky_mode_rel`; * * `bw_one_pole_process1_asym()` assumes that upgoing and downgoing * cutoff/tau are different and the target-reach threshold is `0.f`; * * `bw_one_pole_process1_asym_sticky_abs()` assumes that upgoing and * downgoing cutoff/tau are different, that the target-reach threshold is * not `0.f`, and that the distance metric for sticky behavior is set to * `bw_one_pole_sticky_mode_abs`; * * `bw_one_pole_process1_asym_sticky_rel()` assumes that upgoing and * downgoing cutoff/tau are different, that the target-reach threshold is * not `0.f`, and that the distance metric for sticky behavior is set to * `bw_one_pole_sticky_mode_rel`. * * Such assumptions are unchecked even for debugging purposes. * * #### bw_one_pole_process() * ```>>> */ static inline void bw_one_pole_process( bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the input buffer `x` and fills the * first `n_samples` of the output buffer `y`, while using and updating both * `coeffs` and `state` (control and audio rate). * * `y` may be `BW_NULL`. * * #### bw_one_pole_process_multi() * ```>>> */ static inline void bw_one_pole_process_multi( bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples); /*! <<<``` * Processes the first `n_samples` of the `n_channels` input buffers `x` and * fills the first `n_samples` of the `n_channels` output buffers `y`, while * using and updating both the common `coeffs` and each of the `n_channels` * `state`s (control and audio rate). * * `y` or any element of `y` may be `BW_NULL`. * * #### bw_one_pole_set_cutoff() * ```>>> */ static inline void bw_one_pole_set_cutoff( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets both the upgoing (attack) and downgoing (decay) cutoff frequency to * the given `value` (Hz) in `coeffs`. * * This is equivalent to calling both `bw_one_pole_set_cutoff_up()` and * `bw_one_pole_set_cutoff_down()` with same `coeffs` and `value` or calling * `bw_one_pole_set_tau()` with same `coeffs` and * value = 1 / (2 * pi * `value`) (net of numerical errors). * * `value` must be non-negative. * * Default value: `INFINITY`. * * #### bw_one_pole_set_cutoff_up() * ```>>> */ static inline void bw_one_pole_set_cutoff_up( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the upgoing (attack) cutoff frequency to the given `value` (Hz) in * `coeffs`. * * This is equivalent to calling `bw_one_pole_set_tau_up()` with same * `coeffs` and value = 1 / (2 * pi * `value`) (net of numerical errors). * * `value` must be non-negative. * * Default value: `INFINITY`. * * #### bw_one_pole_set_cutoff_down() * ```>>> */ static inline void bw_one_pole_set_cutoff_down( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the downgoing (attack) cutoff frequency to the given `value` (Hz) in * `coeffs`. * * This is equivalent to calling `bw_one_pole_set_tau_down()` with same * `coeffs` and value = 1 / (2 * pi * `value`) (net of numerical errors). * * `value` must be non-negative. * * Default value: `INFINITY`. * * #### bw_one_pole_set_tau() * ```>>> */ static inline void bw_one_pole_set_tau( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets both the upgoing (attack) and downgoing (decay) time constant to the * given `value` (s) in `coeffs`. * * This is equivalent to calling both `bw_one_pole_set_tau_up()` and * `bw_one_pole_set_tau_down()` with same `coeffs` and `value` or calling * `bw_one_pole_set_cutoff()` with same `coeffs` and * value = 1 / (2 * pi * `value`) (net of numerical errors). * * `value` must be non-negative. * * Default value: `0.f`. * * #### bw_one_pole_set_tau_up() * ```>>> */ static inline void bw_one_pole_set_tau_up( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the upgoing (attack) time constant to the given `value` (s) in * `coeffs`. * * This is equivalent to calling `bw_one_pole_set_cutoff_up()` with same * `coeffs` and value = 1 / (2 * pi * `value`) (net of numerical errors). * * `value` must be non-negative. * * Default value: `0.f`. * * #### bw_one_pole_set_tau_down() * ```>>> */ static inline void bw_one_pole_set_tau_down( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the downgoing (decay) time constant to the given `value` (s) in * `coeffs`. * * This is equivalent to calling `bw_one_pole_set_cutoff_down()` with same * `coeffs` and value = 1 / (2 * pi * `value`) (net of numerical errors). * * `value` must be non-negative. * * Default value: `0.f`. * * #### bw_one_pole_set_sticky_thresh() * ```>>> */ static inline void bw_one_pole_set_sticky_thresh( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value); /*! <<<``` * Sets the target-reach threshold specified by `value` in `coeffs`. * * When the difference between the output and the input would fall under such * threshold according to the current distance metric (see * `bw_one_pole_set_sticky_mode()`), the output is forcefully set to be equal * to the input value. * * Valid range: [`0.f`, `1e18f`]. * * Default value: `0.f`. * * #### bw_one_pole_set_sticky_mode() * ```>>> */ static inline void bw_one_pole_set_sticky_mode( bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_sticky_mode value); /*! <<<``` * Sets the current distance metric for sticky behavior to `value` in * `coeffs`. * * Default value: `bw_one_pole_sticky_mode_abs`. * * #### bw_one_pole_get_y_z1() * ```>>> */ static inline float bw_one_pole_get_y_z1( const bw_one_pole_state * BW_RESTRICT state); /*! <<<``` * Returns the last output sample as stored in `state`. * * #### bw_one_pole_coeffs_is_valid() * ```>>> */ static inline char bw_one_pole_coeffs_is_valid( const bw_one_pole_coeffs * BW_RESTRICT coeffs); /*! <<<``` * Tries to determine whether `coeffs` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * `coeffs` must at least point to a readable memory block of size greater * than or equal to that of `bw_one_pole_coeffs`. * * #### bw_one_pole_state_is_valid() * ```>>> */ static inline char bw_one_pole_state_is_valid( const bw_one_pole_coeffs * BW_RESTRICT coeffs, const bw_one_pole_state * BW_RESTRICT state); /*! <<<``` * Tries to determine whether `state` is valid and returns non-`0` if it * seems to be the case and `0` if it is certainly not. False positives are * possible, false negatives are not. * * If `coeffs` is not `BW_NULL` extra cross-checks might be performed * (`state` is supposed to be associated to `coeffs`). * * `state` must at least point to a readable memory block of size greater * than or equal to that of `bw_one_pole_state`. * }}} */ #ifdef __cplusplus } #endif /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ #include #ifdef __cplusplus extern "C" { #endif #ifdef BW_DEBUG_DEEP enum bw_one_pole_coeffs_state { bw_one_pole_coeffs_state_invalid, bw_one_pole_coeffs_state_init, bw_one_pole_coeffs_state_set_sample_rate, bw_one_pole_coeffs_state_reset_coeffs }; #endif struct bw_one_pole_coeffs { #ifdef BW_DEBUG_DEEP uint32_t hash; enum bw_one_pole_coeffs_state state; uint32_t reset_id; #endif // Coefficients float fs_2pi; float mA1u; float mA1d; float st2; // Parameters float cutoff_up; float cutoff_down; float sticky_thresh; bw_one_pole_sticky_mode sticky_mode; int param_changed; }; struct bw_one_pole_state { #ifdef BW_DEBUG_DEEP uint32_t hash; uint32_t coeffs_reset_id; #endif // States float y_z1; }; #define BW_ONE_POLE_PARAM_CUTOFF_UP 1 #define BW_ONE_POLE_PARAM_CUTOFF_DOWN (1<<1) #define BW_ONE_POLE_PARAM_STICKY_THRESH (1<<2) static inline void bw_one_pole_init( bw_one_pole_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); coeffs->cutoff_up = INFINITY; coeffs->cutoff_down = INFINITY; coeffs->sticky_thresh = 0.f; coeffs->sticky_mode = bw_one_pole_sticky_mode_abs; coeffs->param_changed = ~0; // useless, just to make compilers happy about uninitialized variables #ifdef BW_DEBUG_DEEP coeffs->hash = bw_hash_sdbm("bw_one_pole_coeffs"); coeffs->state = bw_one_pole_coeffs_state_init; coeffs->reset_id = coeffs->hash + 1; #endif BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_one_pole_coeffs_state_init); } static inline void bw_one_pole_set_sample_rate( bw_one_pole_coeffs * BW_RESTRICT coeffs, float sample_rate) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f); coeffs->fs_2pi = 0.15915494309189535f * sample_rate; #ifdef BW_DEBUG_DEEP coeffs->state = bw_one_pole_coeffs_state_set_sample_rate; #endif BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_one_pole_coeffs_state_set_sample_rate); } static inline void bw_one_pole_do_update_coeffs_ctrl( bw_one_pole_coeffs * BW_RESTRICT coeffs) { if (coeffs->param_changed) { if (coeffs->param_changed & BW_ONE_POLE_PARAM_CUTOFF_UP) coeffs->mA1u = coeffs->cutoff_up > 1.591549430918953e8f ? 0.f : coeffs->fs_2pi * bw_rcpf(coeffs->fs_2pi + coeffs->cutoff_up); // tau < 1 ns is instantaneous for any practical purpose if (coeffs->param_changed & BW_ONE_POLE_PARAM_CUTOFF_DOWN) coeffs->mA1d = coeffs->cutoff_down > 1.591549430918953e8f ? 0.f : coeffs->fs_2pi * bw_rcpf(coeffs->fs_2pi + coeffs->cutoff_down); // as before if (coeffs->param_changed & BW_ONE_POLE_PARAM_STICKY_THRESH) coeffs->st2 = coeffs->sticky_thresh * coeffs->sticky_thresh; coeffs->param_changed = 0; } } static inline void bw_one_pole_reset_coeffs( bw_one_pole_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_set_sample_rate); coeffs->param_changed = ~0; bw_one_pole_do_update_coeffs_ctrl(coeffs); #ifdef BW_DEBUG_DEEP coeffs->state = bw_one_pole_coeffs_state_reset_coeffs; coeffs->reset_id++; #endif BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state == bw_one_pole_coeffs_state_reset_coeffs); } static inline float bw_one_pole_reset_state( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x_0) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT(bw_is_finite(x_0)); (void)coeffs; const float y = x_0; state->y_z1 = x_0; #ifdef BW_DEBUG_DEEP state->hash = bw_hash_sdbm("bw_one_pole_state"); state->coeffs_reset_id = coeffs->reset_id; #endif BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_one_pole_reset_state_multi( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state, const float * x_0, float * y_0, size_t n_channels) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x_0 != BW_NULL); if (y_0 != BW_NULL) for (size_t i = 0; i < n_channels; i++) y_0[i] = bw_one_pole_reset_state(coeffs, state[i], x_0[i]); else for (size_t i = 0; i < n_channels; i++) bw_one_pole_reset_state(coeffs, state[i], x_0[i]); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(y_0 != BW_NULL ? bw_has_only_finite(y_0, n_channels) : 1); } static inline void bw_one_pole_update_coeffs_ctrl( bw_one_pole_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); bw_one_pole_do_update_coeffs_ctrl(coeffs); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); } static inline void bw_one_pole_update_coeffs_audio( bw_one_pole_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); (void)coeffs; } static inline float bw_one_pole_process1( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); const float y = x + coeffs->mA1u * (state->y_z1 - x); state->y_z1 = y; BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline float bw_one_pole_process1_sticky_abs( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); float y = x + coeffs->mA1u * (state->y_z1 - x); const float d = y - x; if (d * d <= coeffs->st2) y = x; state->y_z1 = y; BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline float bw_one_pole_process1_sticky_rel( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); float y = x + coeffs->mA1u * (state->y_z1 - x); const float d = y - x; if (d * d <= coeffs->st2 * x * x) y = x; state->y_z1 = y; BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline float bw_one_pole_process1_asym( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); const float y = x + (x >= state->y_z1 ? coeffs->mA1u : coeffs->mA1d) * (state->y_z1 - x); state->y_z1 = y; BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline float bw_one_pole_process1_asym_sticky_abs( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); float y = x + (x >= state->y_z1 ? coeffs->mA1u : coeffs->mA1d) * (state->y_z1 - x); const float d = y - x; if (d * d <= coeffs->st2) y = x; state->y_z1 = y; BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline float bw_one_pole_process1_asym_sticky_rel( const bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, float x) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(x)); float y = x + (x >= state->y_z1 ? coeffs->mA1u : coeffs->mA1d) * (state->y_z1 - x); const float d = y - x; if (d * d <= coeffs->st2 * x * x) y = x; state->y_z1 = y; BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(bw_is_finite(y)); return y; } static inline void bw_one_pole_process( bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT state, const float * x, float * y, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT(x != BW_NULL); BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples)); bw_one_pole_update_coeffs_ctrl(coeffs); if (y != BW_NULL) { if (coeffs->mA1u != coeffs->mA1d) { if (coeffs->st2 != 0.f) { if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs) for (size_t i = 0; i < n_samples; i++) y[i] = bw_one_pole_process1_asym_sticky_abs(coeffs, state, x[i]); else for (size_t i = 0; i < n_samples; i++) y[i] = bw_one_pole_process1_asym_sticky_rel(coeffs, state, x[i]); } else { for (size_t i = 0; i < n_samples; i++) y[i] = bw_one_pole_process1_asym(coeffs, state, x[i]); } } else { if (coeffs->st2 != 0.f) { if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs) for (size_t i = 0; i < n_samples; i++) y[i] = bw_one_pole_process1_sticky_abs(coeffs, state, x[i]); else for (size_t i = 0; i < n_samples; i++) y[i] = bw_one_pole_process1_sticky_rel(coeffs, state, x[i]); } else { for (size_t i = 0; i < n_samples; i++) y[i] = bw_one_pole_process1(coeffs, state, x[i]); } } } else { if (coeffs->mA1u != coeffs->mA1d) { if (coeffs->st2 != 0.f) { if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs) for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_asym_sticky_abs(coeffs, state, x[i]); else for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_asym_sticky_rel(coeffs, state, x[i]); } else { for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_asym(coeffs, state, x[i]); } } else { if (coeffs->st2 != 0.f) { if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs) for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_sticky_abs(coeffs, state, x[i]); else for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_sticky_rel(coeffs, state, x[i]); } else { for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1(coeffs, state, x[i]); } } } BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(coeffs, state)); BW_ASSERT_DEEP(y != BW_NULL ? bw_has_only_finite(y, n_samples) : 1); } static inline void bw_one_pole_process_multi( bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state, const float * const * x, float * const * y, size_t n_channels, size_t n_samples) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); BW_ASSERT(state != BW_NULL); #ifndef BW_NO_DEBUG for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(state[i] != state[j]); #endif BW_ASSERT(x != BW_NULL); #ifndef BW_NO_DEBUG if (y != BW_NULL) for (size_t i = 0; i < n_channels; i++) for (size_t j = i + 1; j < n_channels; j++) BW_ASSERT(y[i] == BW_NULL || y[j] == BW_NULL || y[i] != y[j]); #endif bw_one_pole_update_coeffs_ctrl(coeffs); if (y != BW_NULL) { if (coeffs->mA1u != coeffs->mA1d) { if (coeffs->st2 != 0.f) { if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs) for (size_t j = 0; j < n_channels; j++) if (y[j] != BW_NULL) for (size_t i = 0; i < n_samples; i++) y[j][i] = bw_one_pole_process1_asym_sticky_abs(coeffs, state[j], x[j][i]); else for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_asym_sticky_abs(coeffs, state[j], x[j][i]); else for (size_t j = 0; j < n_channels; j++) if (y[j] != BW_NULL) for (size_t i = 0; i < n_samples; i++) y[j][i] = bw_one_pole_process1_asym_sticky_rel(coeffs, state[j], x[j][i]); else for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_asym_sticky_rel(coeffs, state[j], x[j][i]); } else { for (size_t j = 0; j < n_channels; j++) if (y[j] != BW_NULL) for (size_t i = 0; i < n_samples; i++) y[j][i] = bw_one_pole_process1_asym(coeffs, state[j], x[j][i]); else for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_asym(coeffs, state[j], x[j][i]); } } else { if (coeffs->st2 != 0.f) { if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs) for (size_t j = 0; j < n_channels; j++) if (y[j] != BW_NULL) for (size_t i = 0; i < n_samples; i++) y[j][i] = bw_one_pole_process1_sticky_abs(coeffs, state[j], x[j][i]); else for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_sticky_abs(coeffs, state[j], x[j][i]); else for (size_t j = 0; j < n_channels; j++) if (y[j] != BW_NULL) for (size_t i = 0; i < n_samples; i++) y[j][i] = bw_one_pole_process1_sticky_rel(coeffs, state[j], x[j][i]); else for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1_sticky_rel(coeffs, state[j], x[j][i]); } else { for (size_t j = 0; j < n_channels; j++) if (y[j] != BW_NULL) for (size_t i = 0; i < n_samples; i++) y[j][i] = bw_one_pole_process1(coeffs, state[j], x[j][i]); else for (size_t i = 0; i < n_samples; i++) bw_one_pole_process1(coeffs, state[j], x[j][i]); } } } else { if (coeffs->mA1u != coeffs->mA1d) { if (coeffs->st2 != 0.f) { if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs) for (size_t i = 0; i < n_samples; i++) for (size_t j = 0; j < n_channels; j++) bw_one_pole_process1_asym_sticky_abs(coeffs, state[j], x[j][i]); else for (size_t i = 0; i < n_samples; i++) for (size_t j = 0; j < n_channels; j++) bw_one_pole_process1_asym_sticky_rel(coeffs, state[j], x[j][i]); } else { for (size_t i = 0; i < n_samples; i++) for (size_t j = 0; j < n_channels; j++) bw_one_pole_process1_asym(coeffs, state[j], x[j][i]); } } else { if (coeffs->st2 != 0.f) { if (coeffs->sticky_mode == bw_one_pole_sticky_mode_abs) for (size_t i = 0; i < n_samples; i++) for (size_t j = 0; j < n_channels; j++) bw_one_pole_process1_sticky_abs(coeffs, state[j], x[j][i]); else for (size_t i = 0; i < n_samples; i++) for (size_t j = 0; j < n_channels; j++) bw_one_pole_process1_sticky_rel(coeffs, state[j], x[j][i]); } else { for (size_t i = 0; i < n_samples; i++) for (size_t j = 0; j < n_channels; j++) bw_one_pole_process1(coeffs, state[j], x[j][i]); } } } BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs); } static inline void bw_one_pole_set_cutoff( bw_one_pole_coeffs *BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(!bw_is_nan(value)); BW_ASSERT(value >= 0.f); bw_one_pole_set_cutoff_up(coeffs, value); bw_one_pole_set_cutoff_down(coeffs, value); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); } static inline void bw_one_pole_set_cutoff_up( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(!bw_is_nan(value)); BW_ASSERT(value >= 0.f); if (coeffs->cutoff_up != value) { coeffs->cutoff_up = value; coeffs->param_changed |= BW_ONE_POLE_PARAM_CUTOFF_UP; } BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); } static inline void bw_one_pole_set_cutoff_down( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(!bw_is_nan(value)); BW_ASSERT(value >= 0.f); if (coeffs->cutoff_down != value) { coeffs->cutoff_down = value; coeffs->param_changed |= BW_ONE_POLE_PARAM_CUTOFF_DOWN; } BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); } static inline void bw_one_pole_set_tau( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(!bw_is_nan(value)); BW_ASSERT(value >= 0.f); bw_one_pole_set_tau_up(coeffs, value); bw_one_pole_set_tau_down(coeffs, value); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); } static inline void bw_one_pole_set_tau_up( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(!bw_is_nan(value)); BW_ASSERT(value >= 0.f); bw_one_pole_set_cutoff_up(coeffs, value < 1e-9f ? INFINITY : 0.1591549430918953f * bw_rcpf(value)); // tau < 1 ns is instantaneous for any practical purpose BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); } static inline void bw_one_pole_set_tau_down( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(!bw_is_nan(value)); BW_ASSERT(value >= 0.f); bw_one_pole_set_cutoff_down(coeffs, value < 1e-9f ? INFINITY : 0.1591549430918953f * bw_rcpf(value)); // as before BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); } static inline void bw_one_pole_set_sticky_thresh( bw_one_pole_coeffs * BW_RESTRICT coeffs, float value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(!bw_is_nan(value)); BW_ASSERT(value >= 0.f && value <= 1e18f); if (coeffs->sticky_thresh != value) { coeffs->sticky_thresh = value; coeffs->param_changed |= BW_ONE_POLE_PARAM_STICKY_THRESH; } BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); } static inline void bw_one_pole_set_sticky_mode( bw_one_pole_coeffs * BW_RESTRICT coeffs, bw_one_pole_sticky_mode value) { BW_ASSERT(coeffs != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); BW_ASSERT(value == bw_one_pole_sticky_mode_abs || value == bw_one_pole_sticky_mode_rel); coeffs->sticky_mode = value; BW_ASSERT_DEEP(bw_one_pole_coeffs_is_valid(coeffs)); BW_ASSERT_DEEP(coeffs->state >= bw_one_pole_coeffs_state_init); } static inline float bw_one_pole_get_y_z1( const bw_one_pole_state * BW_RESTRICT state) { BW_ASSERT(state != BW_NULL); BW_ASSERT_DEEP(bw_one_pole_state_is_valid(BW_NULL, state)); return state->y_z1; } static inline char bw_one_pole_coeffs_is_valid( const bw_one_pole_coeffs * BW_RESTRICT coeffs) { BW_ASSERT(coeffs != BW_NULL); #ifdef BW_DEBUG_DEEP if (coeffs->hash != bw_hash_sdbm("bw_one_pole_coeffs")) return 0; if (coeffs->state < bw_one_pole_coeffs_state_init || coeffs->state > bw_one_pole_coeffs_state_reset_coeffs) return 0; #endif if (bw_is_nan(coeffs->cutoff_up) || coeffs->cutoff_up < 0.f) return 0; if (bw_is_nan(coeffs->cutoff_down) || coeffs->cutoff_down < 0.f) return 0; if (!bw_is_finite(coeffs->sticky_thresh) || coeffs->sticky_thresh < 0.f || coeffs->sticky_thresh > 1e18f) return 0; if (coeffs->sticky_mode != bw_one_pole_sticky_mode_abs && coeffs->sticky_mode != bw_one_pole_sticky_mode_rel) return 0; #ifdef BW_DEBUG_DEEP if (coeffs->state >= bw_one_pole_coeffs_state_set_sample_rate) { if (!bw_is_finite(coeffs->fs_2pi) || coeffs->fs_2pi <= 0.f) return 0; } if (coeffs->state >= bw_one_pole_coeffs_state_reset_coeffs) { if (!bw_is_finite(coeffs->mA1u) || coeffs->mA1u < 0.f || coeffs->mA1u > 1.f) return 0; if (!bw_is_finite(coeffs->mA1d) || coeffs->mA1d < 0.f || coeffs->mA1d > 1.f) return 0; if (!bw_is_finite(coeffs->st2) || coeffs->st2 < 0.f) return 0; } #endif return 1; } static inline char bw_one_pole_state_is_valid( const bw_one_pole_coeffs * BW_RESTRICT coeffs, const bw_one_pole_state * BW_RESTRICT state) { BW_ASSERT(state != BW_NULL); #ifdef BW_DEBUG_DEEP if (state->hash != bw_hash_sdbm("bw_one_pole_state")) return 0; if (coeffs != BW_NULL && coeffs->reset_id != state->coeffs_reset_id) return 0; #endif (void)coeffs; return bw_is_finite(state->y_z1); } #undef BW_ONE_POLE_PARAM_CUTOFF_UP #undef BW_ONE_POLE_PARAM_CUTOFF_DOWN #undef BW_ONE_POLE_PARAM_STICKY_THRESH #ifdef __cplusplus } #ifndef BW_CXX_NO_ARRAY # include #endif namespace Brickworks { /*** Public C++ API ***/ /*! api_cpp {{{ * ##### Brickworks::OnePole * ```>>> */ template class OnePole { public: OnePole(); void setSampleRate( float sampleRate); void reset( float x0 = 0.f, float * BW_RESTRICT y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( float x0, std::array * BW_RESTRICT y0); #endif void reset( const float * x0, float * y0 = nullptr); #ifndef BW_CXX_NO_ARRAY void reset( std::array x0, std::array * BW_RESTRICT y0 = nullptr); #endif void process( const float * const * x, float * const * y, size_t nSamples); #ifndef BW_CXX_NO_ARRAY void process( std::array x, std::array y, size_t nSamples); #endif void setCutoff( float value); void setCutoffUp( float value); void setCutoffDown( float value); void setTau( float value); void setTauUp( float value); void setTauDown( float value); void setStickyThresh( float value); void setStickyMode( bw_one_pole_sticky_mode value); float getYZ1( size_t channel); /*! <<<... * } * ``` * }}} */ /*** Implementation ***/ /* WARNING: This part of the file is not part of the public API. Its content may * change at any time in future versions. Please, do not use it directly. */ private: bw_one_pole_coeffs coeffs; bw_one_pole_state states[N_CHANNELS]; bw_one_pole_state * BW_RESTRICT statesP[N_CHANNELS]; }; template inline OnePole::OnePole() { bw_one_pole_init(&coeffs); for (size_t i = 0; i < N_CHANNELS; i++) statesP[i] = states + i; } template inline void OnePole::setSampleRate( float sampleRate) { bw_one_pole_set_sample_rate(&coeffs, sampleRate); } template inline void OnePole::reset( float x0, float * BW_RESTRICT y0) { bw_one_pole_reset_coeffs(&coeffs); if (y0 != nullptr) for (size_t i = 0; i < N_CHANNELS; i++) y0[i] = bw_one_pole_reset_state(&coeffs, states + i, x0); else for (size_t i = 0; i < N_CHANNELS; i++) bw_one_pole_reset_state(&coeffs, states + i, x0); } #ifndef BW_CXX_NO_ARRAY template inline void OnePole::reset( float x0, std::array * BW_RESTRICT y0) { reset(x0, y0 != nullptr ? y0->data() : nullptr); } #endif template inline void OnePole::reset( const float * x0, float * y0) { bw_one_pole_reset_coeffs(&coeffs); bw_one_pole_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS); } #ifndef BW_CXX_NO_ARRAY template inline void OnePole::reset( std::array x0, std::array * BW_RESTRICT y0) { reset(x0.data(), y0 != nullptr ? y0->data() : nullptr); } #endif template inline void OnePole::process( const float * const * x, float * const * y, size_t nSamples) { bw_one_pole_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples); } #ifndef BW_CXX_NO_ARRAY template inline void OnePole::process( std::array x, std::array y, size_t nSamples) { process(x.data(), y.data(), nSamples); } #endif template inline void OnePole::setCutoff( float value) { bw_one_pole_set_cutoff(&coeffs, value); } template inline void OnePole::setCutoffUp( float value) { bw_one_pole_set_cutoff_up(&coeffs, value); } template inline void OnePole::setCutoffDown( float value) { bw_one_pole_set_cutoff_down(&coeffs, value); } template inline void OnePole::setTau( float value) { bw_one_pole_set_tau(&coeffs, value); } template inline void OnePole::setTauUp( float value) { bw_one_pole_set_tau_up(&coeffs, value); } template inline void OnePole::setTauDown( float value) { bw_one_pole_set_tau_down(&coeffs, value); } template inline void OnePole::setStickyThresh( float value) { bw_one_pole_set_sticky_thresh(&coeffs, value); } template inline void OnePole::setStickyMode( bw_one_pole_sticky_mode value) { bw_one_pole_set_sticky_mode(&coeffs, value); } template inline float OnePole::getYZ1( size_t channel) { return bw_one_pole_get_y_z1(states + channel); } } #endif #endif