finalized bw_{notch,peak} + examples

This commit is contained in:
Stefano D'Angelo 2023-09-11 10:52:41 +02:00
parent 213bac4209
commit d9e021aca3
5 changed files with 1109 additions and 126 deletions

1
TODO
View File

@ -21,7 +21,6 @@ code:
* bw_comb: integer target delay values?
* prewarp control in all derived filtering modules
* src inside distortions? w/ control from outside?
* peak gain + Q ???
* better src filter
finally:
* debugging - also check outputs different (incl bw_buf)

View File

@ -4,3 +4,6 @@ NAME := bw_example_fx_notch
SOURCES = ${SOURCES_COMMON} ${ROOT_DIR}/../src/bw_example_fx_notch.c
include ${ROOT_DIR}/../../common/vst3/vst3.mk
CXXFLAGS += -DRELEASE=1 -DNDEBUG -DBW_NO_DEBUG
#CXXFLAGS += -DDEVELOPMENT=1 -DBW_DEBUG_DEEP

View File

@ -4,3 +4,6 @@ NAME := bw_example_fxpp_notch
SOURCES = ${SOURCES_COMMON} ${ROOT_DIR}/../src/bw_example_fxpp_notch.cpp
include ${ROOT_DIR}/../../common/vst3/vst3.mk
CXXFLAGS += -DRELEASE=1 -DNDEBUG -DBW_NO_DEBUG
#CXXFLAGS += -DDEVELOPMENT=1 -DBW_DEBUG_DEEP

View File

@ -30,6 +30,12 @@
* <ul>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Added <code>bw_notch_reset_state_multi()</code> and updated C++
* API in this regard.</li>
* <li>Now <code>bw_notch_reset_state()</code> returns the initial
* output value.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li><code>bw_notch_process()</code> and
* <code>bw_notch_process_multi()</code> now use
* <code>size_t</code> to count samples and channels.</li>
@ -39,6 +45,8 @@
* <li>Added overloaded C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
@ -91,51 +99,86 @@ typedef struct bw_notch_state bw_notch_state;
*
* #### bw_notch_init()
* ```>>> */
static inline void bw_notch_init(bw_notch_coeffs *BW_RESTRICT coeffs);
static inline void bw_notch_init(
bw_notch_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_notch_set_sample_rate()
* ```>>> */
static inline void bw_notch_set_sample_rate(bw_notch_coeffs *BW_RESTRICT coeffs, float sample_rate);
static inline void bw_notch_set_sample_rate(
bw_notch_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_notch_reset_coeffs()
* ```>>> */
static inline void bw_notch_reset_coeffs(bw_notch_coeffs *BW_RESTRICT coeffs);
static inline void bw_notch_reset_coeffs(
bw_notch_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_notch_reset_state()
* ```>>> */
static inline void bw_notch_reset_state(const bw_notch_coeffs *BW_RESTRICT coeffs, bw_notch_state *BW_RESTRICT state, float x_0);
static inline float bw_notch_reset_state(
const bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT state,
float x_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the quiescent/initial input value `x_0`.
*
* Returns the corresponding quiescent/initial output value.
*
* #### bw_notch_reset_state_multi()
* ```>>> */
static inline void bw_notch_reset_state_multi(
const bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding quiescent/initial input value in the
* `x_0` array.
*
* The corresponding quiescent/initial output values are written into the
* `y_0` array, if not `NULL`.
*
* #### bw_notch_update_coeffs_ctrl()
* ```>>> */
static inline void bw_notch_update_coeffs_ctrl(bw_notch_coeffs *BW_RESTRICT coeffs);
static inline void bw_notch_update_coeffs_ctrl(
bw_notch_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_notch_update_coeffs_audio()
* ```>>> */
static inline void bw_notch_update_coeffs_audio(bw_notch_coeffs *BW_RESTRICT coeffs);
static inline void bw_notch_update_coeffs_audio(
bw_notch_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_notch_process1()
* ```>>> */
static inline float bw_notch_process1(const bw_notch_coeffs *BW_RESTRICT coeffs, bw_notch_state *BW_RESTRICT state, float x);
static inline float bw_notch_process1(
const bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT state,
float x);
/*! <<<```
* Processes one input sample `x` using `coeffs`, while using and updating
* `state`. Returns the corresponding output sample.
*
* #### bw_notch_process()
* ```>>> */
static inline void bw_notch_process(bw_notch_coeffs *BW_RESTRICT coeffs, bw_notch_state *BW_RESTRICT state, const float *x, float *y, size_t n_samples);
static inline void bw_notch_process(
bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffer `y`, while using and updating both
@ -143,7 +186,13 @@ static inline void bw_notch_process(bw_notch_coeffs *BW_RESTRICT coeffs, bw_notc
*
* #### bw_notch_process_multi()
* ```>>> */
static inline void bw_notch_process_multi(bw_notch_coeffs *BW_RESTRICT coeffs, bw_notch_state *BW_RESTRICT const *BW_RESTRICT state, const float * const *x, float * const *y, size_t n_channels, size_t n_samples);
static inline void bw_notch_process_multi(
bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
@ -152,21 +201,81 @@ static inline void bw_notch_process_multi(bw_notch_coeffs *BW_RESTRICT coeffs, b
*
* #### bw_notch_set_cutoff()
* ```>>> */
static inline void bw_notch_set_cutoff(bw_notch_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_notch_set_cutoff(
bw_notch_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the cutoff frequency `value` (Hz) in `coeffs`.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_notch_set_Q()
* ```>>> */
static inline void bw_notch_set_Q(bw_notch_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_notch_set_Q(
bw_notch_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the quality factor to the given `value` in `coeffs`.
*
* `value` must be equal or bigger than `0.5f`.
* Valid range: [`1e-6f`, `1e6f`].
*
* Default value: `0.5f`.
*
* #### bw_notch_set_prewarp_at_cutoff()
* ```>>> */
static inline void bw_notch_set_prewarp_at_cutoff(
bw_notch_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether bilinear transform prewarping frequency should match the
* cutoff frequency (non-`0`) or not (`0`).
*
* Default value: non-`0` (on).
*
* #### bw_notch_set_prewarp_freq()
* ```>>> */
static inline void bw_notch_set_prewarp_freq(
bw_notch_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the prewarping frequency `value` (Hz) in `coeffs`.
*
* Only used when the prewarp\_at\_cutoff parameter is off and however
* internally limited to avoid instability.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_notch_coeffs_is_valid()
* ```>>> */
static inline char bw_notch_coeffs_is_valid(
const bw_notch_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_notch_coeffs`.
*
* #### bw_notch_state_is_valid()
* ```>>> */
static inline char bw_notch_state_is_valid(
const bw_notch_coeffs * BW_RESTRICT coeffs,
const bw_notch_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `NULL` extra cross-checks might be performed (`state`
* is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_notch_state`.
* }}} */
#ifdef __cplusplus
@ -184,68 +293,320 @@ static inline void bw_notch_set_Q(bw_notch_coeffs *BW_RESTRICT coeffs, float val
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_notch_coeffs_state {
bw_notch_coeffs_state_invalid,
bw_notch_coeffs_state_init,
bw_notch_coeffs_state_set_sample_rate,
bw_notch_coeffs_state_reset_coeffs
};
#endif
struct bw_notch_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_notch_coeffs_state state;
uint32_t reset_id;
#endif
// Sub-components
bw_svf_coeffs svf_coeffs;
bw_svf_coeffs svf_coeffs;
};
struct bw_notch_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
bw_svf_state svf_state;
};
static inline void bw_notch_init(bw_notch_coeffs *BW_RESTRICT coeffs) {
static inline void bw_notch_init(
bw_notch_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
bw_svf_init(&coeffs->svf_coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_notch_coeffs");
coeffs->state = bw_notch_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_notch_coeffs_state_init);
}
static inline void bw_notch_set_sample_rate(bw_notch_coeffs *BW_RESTRICT coeffs, float sample_rate) {
static inline void bw_notch_set_sample_rate(
bw_notch_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
bw_svf_set_sample_rate(&coeffs->svf_coeffs, sample_rate);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_notch_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_notch_coeffs_state_set_sample_rate);
}
static inline void bw_notch_reset_coeffs(bw_notch_coeffs *BW_RESTRICT coeffs) {
static inline void bw_notch_reset_coeffs(
bw_notch_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_set_sample_rate);
bw_svf_reset_coeffs(&coeffs->svf_coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_notch_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_notch_coeffs_state_reset_coeffs);
}
static inline void bw_notch_reset_state(const bw_notch_coeffs *BW_RESTRICT coeffs, bw_notch_state *BW_RESTRICT state, float x_0) {
bw_svf_reset_state(&coeffs->svf_coeffs, &state->svf_state, x_0);
static inline float bw_notch_reset_state(
const bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT state,
float x_0) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(bw_is_finite(x_0));
float lp, bp, hp;
bw_svf_reset_state(&coeffs->svf_coeffs, &state->svf_state, x_0, &lp, &bp, &hp);
const float y = x_0;
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_notch_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_notch_update_coeffs_ctrl(bw_notch_coeffs *BW_RESTRICT coeffs) {
static inline void bw_notch_reset_state_multi(
const bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(x_0 != NULL);
if (y_0 != NULL)
for (size_t i = 0; i < n_channels; i++)
y_0[i] = bw_notch_reset_state(coeffs, state[i], x_0[i]);
else
for (size_t i = 0; i < n_channels; i++)
bw_notch_reset_state(coeffs, state[i], x_0[i]);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != NULL ? bw_has_only_finite(y_0, n_channels) : 1);
}
static inline void bw_notch_update_coeffs_ctrl(
bw_notch_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
bw_svf_update_coeffs_ctrl(&coeffs->svf_coeffs);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
}
static inline void bw_notch_update_coeffs_audio(bw_notch_coeffs *BW_RESTRICT coeffs) {
static inline void bw_notch_update_coeffs_audio(
bw_notch_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
bw_svf_update_coeffs_audio(&coeffs->svf_coeffs);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
}
static inline float bw_notch_process1(const bw_notch_coeffs *BW_RESTRICT coeffs, bw_notch_state *BW_RESTRICT state, float x) {
static inline float bw_notch_process1(
const bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
float lp, bp, hp;
bw_svf_process1(&coeffs->svf_coeffs, &state->svf_state, x, &lp, &bp, &hp);
return lp + hp;
const float y = lp + hp;
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_notch_process(bw_notch_coeffs *BW_RESTRICT coeffs, bw_notch_state *BW_RESTRICT state, const float *x, float *y, size_t n_samples) {
static inline void bw_notch_process(
bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state));
BW_ASSERT(x != NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
BW_ASSERT(y != NULL);
bw_notch_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++) {
bw_notch_update_coeffs_audio(coeffs);
y[i] = bw_notch_process1(coeffs, state, x[i]);
}
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_notch_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples));
}
static inline void bw_notch_process_multi(bw_notch_coeffs *BW_RESTRICT coeffs, bw_notch_state *BW_RESTRICT const *BW_RESTRICT state, const float * const *x, float * const *y, size_t n_channels, size_t n_samples) {
static inline void bw_notch_process_multi(
bw_notch_coeffs * BW_RESTRICT coeffs,
bw_notch_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(x != NULL);
BW_ASSERT(y != NULL);
bw_notch_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++) {
bw_notch_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++)
y[j][i] = bw_notch_process1(coeffs, state[j], x[j][i]);
}
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_reset_coeffs);
}
static inline void bw_notch_set_cutoff(bw_notch_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_notch_set_cutoff(
bw_notch_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
bw_svf_set_cutoff(&coeffs->svf_coeffs, value);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
}
static inline void bw_notch_set_Q(bw_notch_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_notch_set_Q(
bw_notch_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e6f);
bw_svf_set_Q(&coeffs->svf_coeffs, value);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
}
static inline void bw_notch_set_prewarp_at_cutoff(
bw_notch_coeffs * BW_RESTRICT coeffs,
char value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
bw_svf_set_prewarp_at_cutoff(&coeffs->svf_coeffs, value);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
}
static inline void bw_notch_set_prewarp_freq(
bw_notch_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
bw_svf_set_prewarp_freq(&coeffs->svf_coeffs, value);
BW_ASSERT_DEEP(bw_notch_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_notch_coeffs_state_init);
}
static inline char bw_notch_coeffs_is_valid(
const bw_notch_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_notch_coeffs"))
return 0;
if (coeffs->state < bw_notch_coeffs_state_init || coeffs->state > bw_notch_coeffs_state_reset_coeffs)
return 0;
#endif
return bw_svf_coeffs_is_valid(&coeffs->svf_coeffs);
}
static inline char bw_notch_state_is_valid(
const bw_notch_coeffs * BW_RESTRICT coeffs,
const bw_notch_state * BW_RESTRICT state) {
BW_ASSERT(state != NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_notch_state"))
return 0;
if (coeffs != NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
(void)coeffs;
return bw_svf_state_is_valid(&coeffs->svf_coeffs, &state->svf_state);
}
#ifdef __cplusplus
@ -265,19 +626,46 @@ class Notch {
public:
Notch();
void setSampleRate(float sampleRate);
void reset(float x_0 = 0.f);
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const *x,
float * const *y,
size_t nSamples);
const float * const * x,
float * const * y,
size_t nSamples);
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
std::array<float *, N_CHANNELS> y,
size_t nSamples);
void setCutoff(float value);
void setQ(float value);
void setCutoff(
float value);
void setQ(
float value);
void setPrewarpAtCutoff(
bool value);
void setPrewarpFreq(
float value);
/*! <<<...
* }
* ```
@ -289,9 +677,9 @@ public:
* change at any time in future versions. Please, do not use it directly. */
private:
bw_notch_coeffs coeffs;
bw_notch_state states[N_CHANNELS];
bw_notch_state *BW_RESTRICT statesP[N_CHANNELS];
bw_notch_coeffs coeffs;
bw_notch_state states[N_CHANNELS];
bw_notch_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
@ -302,43 +690,86 @@ inline Notch<N_CHANNELS>::Notch() {
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::setSampleRate(float sampleRate) {
inline void Notch<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_notch_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::reset(float x_0) {
inline void Notch<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT y0) {
bw_notch_reset_coeffs(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
bw_notch_reset_state(&coeffs, states + i, x_0);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
y0[i] = bw_notch_reset_state(&coeffs, states + i, x0);
else
for (size_t i = 0; i < N_CHANNELS; i++)
bw_notch_reset_state(&coeffs, states + i, x0);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::reset(
const float * x0,
float * y0) {
bw_notch_reset_coeffs(&coeffs);
bw_notch_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::process(
const float * const *x,
float * const *y,
size_t nSamples) {
const float * const * x,
float * const * y,
size_t nSamples) {
bw_notch_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
process(x.data(), y.data(), nSamples);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::setCutoff(float value) {
inline void Notch<N_CHANNELS>::setCutoff(
float value) {
bw_notch_set_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::setQ(float value) {
inline void Notch<N_CHANNELS>::setQ(
float value) {
bw_notch_set_Q(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::setPrewarpAtCutoff(
bool value) {
bw_notch_set_prewarp_at_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Notch<N_CHANNELS>::setPrewarpFreq(
float value) {
bw_notch_set_prewarp_freq(&coeffs, value);
}
}
#endif

View File

@ -37,6 +37,12 @@
* <ul>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Added <code>bw_peak_reset_state_multi()</code> and updated C++
* API in this regard.</li>
* <li>Now <code>bw_peak_reset_state()</code> returns the initial
* output value.</li>
* <li>Added overloaded C++ <code>reset()</code> functions taking
* arrays as arguments.</li>
* <li><code>bw_peak_process()</code> and
* <code>bw_peak_process_multi()</code> now use <code>size_t</code>
* to count samples and channels.</li>
@ -48,6 +54,8 @@
* <li>Removed usage of reserved identifiers.</li>
* <li>Added pragmas to silence bogus GCC uninitialized variable
* warnings.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
@ -102,51 +110,86 @@ typedef struct bw_peak_state bw_peak_state;
*
* #### bw_peak_init()
* ```>>> */
static inline void bw_peak_init(bw_peak_coeffs *BW_RESTRICT coeffs);
static inline void bw_peak_init(
bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_peak_set_sample_rate()
* ```>>> */
static inline void bw_peak_set_sample_rate(bw_peak_coeffs *BW_RESTRICT coeffs, float sample_rate);
static inline void bw_peak_set_sample_rate(
bw_peak_coeffs *BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_peak_reset_coeffs()
* ```>>> */
static inline void bw_peak_reset_coeffs(bw_peak_coeffs *BW_RESTRICT coeffs);
static inline void bw_peak_reset_coeffs(
bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_peak_reset_state()
* ```>>> */
static inline void bw_peak_reset_state(const bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_state *BW_RESTRICT state, float x_0);
static inline float bw_peak_reset_state(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
float x_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the quiescent/initial input value `x_0`.
*
* Returns the corresponding quiescent/initial output value.
*
* #### bw_peak_reset_state_multi()
* ```>>> */
static inline void bw_peak_reset_state_multi(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding quiescent/initial input value in the
* `x_0` array.
*
* The corresponding quiescent/initial output values are written into the
* `y_0` array, if not `NULL`.
*
* #### bw_peak_update_coeffs_ctrl()
* ```>>> */
static inline void bw_peak_update_coeffs_ctrl(bw_peak_coeffs *BW_RESTRICT coeffs);
static inline void bw_peak_update_coeffs_ctrl(
bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_peak_update_coeffs_audio()
* ```>>> */
static inline void bw_peak_update_coeffs_audio(bw_peak_coeffs *BW_RESTRICT coeffs);
static inline void bw_peak_update_coeffs_audio(
bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_peak_process1()
* ```>>> */
static inline float bw_peak_process1(const bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_state *BW_RESTRICT state, float x);
static inline float bw_peak_process1(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
float x);
/*! <<<```
* Processes one input sample `x` using `coeffs`, while using and updating
* `state`. Returns the corresponding output sample.
*
* #### bw_peak_process()
* ```>>> */
static inline void bw_peak_process(bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_state *BW_RESTRICT state, const float *x, float *y, size_t n_samples);
static inline void bw_peak_process(
bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffer `y`, while using and updating both
@ -154,7 +197,13 @@ static inline void bw_peak_process(bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_s
*
* #### bw_peak_process_multi()
* ```>>> */
static inline void bw_peak_process_multi(bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_state *BW_RESTRICT const *BW_RESTRICT state, const float * const *x, float * const *y, size_t n_channels, size_t n_samples);
static inline void bw_peak_process_multi(
bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y`, while
@ -163,55 +212,147 @@ static inline void bw_peak_process_multi(bw_peak_coeffs *BW_RESTRICT coeffs, bw_
*
* #### bw_peak_set_cutoff()
* ```>>> */
static inline void bw_peak_set_cutoff(bw_peak_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_peak_set_cutoff(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the cutoff frequency `value` (Hz) in `coeffs`.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_peak_set_Q()
* ```>>> */
static inline void bw_peak_set_Q(bw_peak_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_peak_set_Q(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the quality factor to the given `value` in `coeffs`.
*
* `value` must be equal or bigger than `0.5f`.
* Valid range: [`1e-6f`, `1e6f`].
*
* Default value: `0.5f`.
*
* #### bw_peak_set_prewarp_at_cutoff()
* ```>>> */
static inline void bw_peak_set_prewarp_at_cutoff(
bw_peak_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether bilinear transform prewarping frequency should match the
* cutoff frequency (non-`0`) or not (`0`).
*
* Default value: non-`0` (on).
*
* #### bw_peak_set_prewarp_freq()
* ```>>> */
static inline void bw_peak_set_prewarp_freq(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the prewarping frequency `value` (Hz) in `coeffs`.
*
* Only used when the prewarp\_at\_cutoff parameter is off and however
* internally limited to avoid instability.
*
* Valid range: [`1e-6f`, `1e12f`].
*
* Default value: `1e3f`.
*
* #### bw_peak_set_peak_gain_lin()
* ```>>> */
static inline void bw_peak_set_peak_gain_lin(bw_peak_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_peak_set_peak_gain_lin(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the peak gain parameter to the given `value` (linear gain) in
* `coeffs`.
*
* Default value: `0.f`.
* `value` must be finite and positive.
*
* If actually using the bandwidth parameter to control Q, by the time
* `bw_peak_update_coeffs_ctrl()`, `bw_peak_update_coeffs_audio()`,
* `bw_peak_process1()`, `bw_peak_process()`, or `bw_peak_process_multi()` is
* called, `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain)
* * bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`].
*
* Default value: `1.f`.
*
* #### bw_peak_set_peak_gain_dB()
* ```>>> */
static inline void bw_peak_set_peak_gain_dB(bw_peak_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_peak_set_peak_gain_dB(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the peak gain parameter to the given `value` (dB) in `coeffs`.
*
* Default value: `-INFINITY`.
* `value` must be finite.
*
* If actually using the bandwidth parameter to control Q, by the time
* `bw_peak_update_coeffs_ctrl()`, `bw_peak_update_coeffs_audio()`,
* `bw_peak_process1()`, `bw_peak_process()`, or `bw_peak_process_multi()` is
* called, `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain)
* * bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`].
*
* Default value: `0.f`.
*
* #### bw_peak_set_bandiwdth()
* ```>>> */
static inline void bw_peak_set_bandwidth(bw_peak_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_peak_set_bandwidth(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the bandwidth `value` (octaves) in `coeffs`.
*
* Default value: `0.5f`.
* If actually using the bandwidth parameter to control Q, by the time
* `bw_peak_update_coeffs_ctrl()`, `bw_peak_update_coeffs_audio()`,
* `bw_peak_process1()`, `bw_peak_process()`, or `bw_peak_process_multi()` is
* called, `bw_sqrtf(bw_pow2f(bandwidth) * peak_gain)
* * bw_rcpf(bw_pow2f(bandwidth) - 1.f)` must be in [`1e-6f`, `1e6f`].
*
* Valid range: [`1e-6f`, `90.f`].
*
* Default value: `2.543106606327224f`.
*
* #### bw_peak_set_use_bandwidth()
* ```>>> */
static inline void bw_peak_set_use_bandwidth(bw_peak_coeffs *BW_RESTRICT coeffs, char value);
static inline void bw_peak_set_use_bandwidth(
bw_peak_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether the quality factor should be controlled via the bandwidth
* parameter (`value` non-`0`) or via the Q parameter (`0`).
*
* Default value: non-`0` (use bandwidth parameter).
*
* #### bw_peak_coeffs_is_valid()
* ```>>> */
static inline char bw_peak_coeffs_is_valid(
const bw_peak_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_peak_coeffs`.
*
* #### bw_peak_state_is_valid()
* ```>>> */
static inline char bw_peak_state_is_valid(
const bw_peak_coeffs * BW_RESTRICT coeffs,
const bw_peak_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `NULL` extra cross-checks might be performed (`state`
* is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_peak_state`.
* }}} */
#ifdef __cplusplus
@ -230,42 +371,87 @@ static inline void bw_peak_set_use_bandwidth(bw_peak_coeffs *BW_RESTRICT coeffs,
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_peak_coeffs_state {
bw_peak_coeffs_state_invalid,
bw_peak_coeffs_state_init,
bw_peak_coeffs_state_set_sample_rate,
bw_peak_coeffs_state_reset_coeffs
};
#endif
struct bw_peak_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_peak_coeffs_state state;
uint32_t reset_id;
#endif
// Sub-components
bw_mm2_coeffs mm2_coeffs;
bw_mm2_coeffs mm2_coeffs;
// Coefficients
float bw_k;
float bw_k;
// Parameters
float peak_gain;
float Q;
float bandwidth;
char use_bandwidth;
int param_changed;
float Q;
float peak_gain;
float bandwidth;
char use_bandwidth;
int param_changed;
};
struct bw_peak_state {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
bw_mm2_state mm2_state;
};
#define BW_PEAK_PARAM_PEAK_GAIN 1
#define BW_PEAK_PARAM_Q (1<<1)
#define BW_PEAK_PARAM_Q 1
#define BW_PEAK_PARAM_PEAK_GAIN (1<<1)
#define BW_PEAK_PARAM_BANDWIDTH (1<<2)
static inline void bw_peak_init(bw_peak_coeffs *BW_RESTRICT coeffs) {
static inline void bw_peak_init(
bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
bw_mm2_init(&coeffs->mm2_coeffs);
coeffs->peak_gain = 1.f;
coeffs->Q = 0.5f;
coeffs->peak_gain = 1.f;
coeffs->bandwidth = 2.543106606327224f;
coeffs->use_bandwidth = 1;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_peak_coeffs");
coeffs->state = bw_peak_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_sample_rate(bw_peak_coeffs *BW_RESTRICT coeffs, float sample_rate) {
static inline void bw_peak_set_sample_rate(
bw_peak_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
bw_mm2_set_sample_rate(&coeffs->mm2_coeffs, sample_rate);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_peak_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_set_sample_rate);
}
static inline void bw_peak_update_mm2_params(bw_peak_coeffs *BW_RESTRICT coeffs) {
static inline void bw_peak_update_mm2_params(
bw_peak_coeffs * BW_RESTRICT coeffs) {
if (coeffs->param_changed) {
if (coeffs->use_bandwidth) {
if (coeffs->param_changed & (BW_PEAK_PARAM_PEAK_GAIN | BW_PEAK_PARAM_BANDWIDTH)) {
@ -286,51 +472,214 @@ static inline void bw_peak_update_mm2_params(bw_peak_coeffs *BW_RESTRICT coeffs)
}
}
static inline void bw_peak_reset_coeffs(bw_peak_coeffs *BW_RESTRICT coeffs) {
static inline void bw_peak_reset_coeffs(
bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_set_sample_rate);
coeffs->param_changed = ~0;
bw_peak_update_mm2_params(coeffs);
bw_mm2_reset_coeffs(&coeffs->mm2_coeffs);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_peak_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_peak_coeffs_state_reset_coeffs);
}
static inline void bw_peak_reset_state(const bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_state *BW_RESTRICT state, float x_0) {
static inline float bw_peak_reset_state(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
float x_0) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(bw_is_finite(x_0));
const float y = x_0;
bw_mm2_reset_state(&coeffs->mm2_coeffs, &state->mm2_state, x_0);
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_peak_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_peak_update_coeffs_ctrl(bw_peak_coeffs *BW_RESTRICT coeffs) {
static inline void bw_peak_reset_state_multi(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(x_0 != NULL);
if (y_0 != NULL)
for (size_t i = 0; i < n_channels; i++)
y_0[i] = bw_peak_reset_state(coeffs, state[i], x_0[i]);
else
for (size_t i = 0; i < n_channels; i++)
bw_peak_reset_state(coeffs, state[i], x_0[i]);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_0 != NULL ? bw_has_only_finite(y_0, n_channels) : 1);
}
static inline void bw_peak_update_coeffs_ctrl(
bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
bw_peak_update_mm2_params(coeffs);
bw_mm2_update_coeffs_ctrl(&coeffs->mm2_coeffs);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
}
static inline void bw_peak_update_coeffs_audio(bw_peak_coeffs *BW_RESTRICT coeffs) {
static inline void bw_peak_update_coeffs_audio(
bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
bw_mm2_update_coeffs_audio(&coeffs->mm2_coeffs);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
}
static inline float bw_peak_process1(const bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_state *BW_RESTRICT state, float x) {
return bw_mm2_process1(&coeffs->mm2_coeffs, &state->mm2_state, x);
static inline float bw_peak_process1(
const bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
float x) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
const float y = bw_mm2_process1(&coeffs->mm2_coeffs, &state->mm2_state, x);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(y));
return y;
}
static inline void bw_peak_process(bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_state *BW_RESTRICT state, const float *x, float *y, size_t n_samples) {
static inline void bw_peak_process(
bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT(x != NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
BW_ASSERT(y != NULL);
bw_peak_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++) {
bw_peak_update_coeffs_audio(coeffs);
y[i] = bw_peak_process1(coeffs, state, x[i]);
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_peak_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(bw_has_only_finite(y, n_samples));
}
static inline void bw_peak_process_multi(bw_peak_coeffs *BW_RESTRICT coeffs, bw_peak_state *BW_RESTRICT const *BW_RESTRICT state, const float * const *x, float * const *y, size_t n_channels, size_t n_samples) {
static inline void bw_peak_process_multi(
bw_peak_coeffs * BW_RESTRICT coeffs,
bw_peak_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(coeffs->use_bandwidth
? bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) >= 1e-6f
&& bw_sqrtf(bw_pow2f(coeffs->bandwidth) * coeffs->peak_gain) * bw_rcpf(bw_pow2f(coeffs->bandwidth) - 1.f) <= 1e6f
: coeffs->Q >= 1e-6 && coeffs->Q <= 1e6);
BW_ASSERT(state != NULL);
BW_ASSERT(x != NULL);
BW_ASSERT(y != NULL);
bw_peak_update_coeffs_ctrl(coeffs);
for (size_t i = 0; i < n_samples; i++) {
bw_peak_update_coeffs_audio(coeffs);
for (size_t j = 0; j < n_channels; j++)
y[j][i] = bw_peak_process1(coeffs, state[j], x[j][i]);
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_reset_coeffs);
}
static inline void bw_peak_set_cutoff(bw_peak_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_peak_set_cutoff(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
bw_mm2_set_cutoff(&coeffs->mm2_coeffs, value);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_Q(bw_peak_coeffs *BW_RESTRICT coeffs, float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e6f);
if (coeffs->Q != value) {
coeffs->Q = value;
#pragma GCC diagnostic push
@ -338,9 +687,48 @@ static inline void bw_peak_set_Q(bw_peak_coeffs *BW_RESTRICT coeffs, float value
coeffs->param_changed |= BW_PEAK_PARAM_Q;
#pragma GCC diagnostic pop
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_peak_gain_lin(bw_peak_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_peak_set_prewarp_at_cutoff(
bw_peak_coeffs * BW_RESTRICT coeffs,
char value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
bw_mm2_set_prewarp_at_cutoff(&coeffs->mm2_coeffs, value);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_prewarp_freq(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e12f);
bw_mm2_set_prewarp_freq(&coeffs->mm2_coeffs, value);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_peak_gain_lin(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value > 0.f);
if (coeffs->peak_gain != value) {
coeffs->peak_gain = value;
#pragma GCC diagnostic push
@ -348,13 +736,34 @@ static inline void bw_peak_set_peak_gain_lin(bw_peak_coeffs *BW_RESTRICT coeffs,
coeffs->param_changed |= BW_PEAK_PARAM_PEAK_GAIN;
#pragma GCC diagnostic pop
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_peak_gain_dB(bw_peak_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_peak_set_peak_gain_dB(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
bw_peak_set_peak_gain_lin(coeffs, bw_dB2linf(value));
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_bandwidth(bw_peak_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_peak_set_bandwidth(
bw_peak_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 90.f);
if (coeffs->bandwidth != value) {
coeffs->bandwidth = value;
#pragma GCC diagnostic push
@ -362,9 +771,16 @@ static inline void bw_peak_set_bandwidth(bw_peak_coeffs *BW_RESTRICT coeffs, flo
coeffs->param_changed |= BW_PEAK_PARAM_BANDWIDTH;
#pragma GCC diagnostic pop
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline void bw_peak_set_use_bandwidth(bw_peak_coeffs *BW_RESTRICT coeffs, char value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
if ((coeffs->use_bandwidth && !value) || (!coeffs->use_bandwidth && value)) {
coeffs->use_bandwidth = value;
#pragma GCC diagnostic push
@ -372,10 +788,59 @@ static inline void bw_peak_set_use_bandwidth(bw_peak_coeffs *BW_RESTRICT coeffs,
coeffs->param_changed |= BW_PEAK_PARAM_Q | BW_PEAK_PARAM_BANDWIDTH;
#pragma GCC diagnostic pop
}
BW_ASSERT_DEEP(bw_peak_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_peak_coeffs_state_init);
}
static inline char bw_peak_coeffs_is_valid(
const bw_peak_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_peak_coeffs"))
return 0;
if (coeffs->state < bw_peak_coeffs_state_init || coeffs->state > bw_peak_coeffs_state_reset_coeffs)
return 0;
#endif
if (!bw_is_finite(coeffs->Q) || coeffs->Q < 1e-6f || coeffs->Q > 1e6f)
return 0;
if (!bw_is_finite(coeffs->peak_gain) || coeffs->peak_gain <= 0.f)
return 0;
if (!bw_is_finite(coeffs->bandwidth) || coeffs->bandwidth < 1e-6f || coeffs->bandwidth > 90.f)
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_peak_coeffs_state_reset_coeffs) {
if (!bw_is_finite(coeffs->bw_k) || coeffs->bw_k <= 0.f)
return 0;
}
#endif
return bw_mm2_coeffs_is_valid(&coeffs->mm2_coeffs);
}
static inline char bw_peak_state_is_valid(
const bw_peak_coeffs * BW_RESTRICT coeffs,
const bw_peak_state * BW_RESTRICT state) {
BW_ASSERT(state != NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_peak_state"))
return 0;
if (coeffs != NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
(void)coeffs;
return bw_mm2_state_is_valid(&coeffs->mm2_coeffs, &state->mm2_state);
}
#undef BW_PEAK_PARAM_PEAK_GAIN
#undef BW_PEAK_PARAM_Q
#undef BW_PEAK_PARAM_PEAK_GAIN
#undef BW_PEAK_PARAM_BANDWIDTH
#ifdef __cplusplus
@ -395,23 +860,58 @@ class Peak {
public:
Peak();
void setSampleRate(float sampleRate);
void reset(float x_0 = 0.f);
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const *x,
float * const *y,
size_t nSamples);
const float * const * x,
float * const * y,
size_t nSamples);
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
std::array<float *, N_CHANNELS> y,
size_t nSamples);
void setCutoff(float value);
void setQ(float value);
void setPeakGainLin(float value);
void setPeakGainDB(float value);
void setBandwidth(float value);
void setUseBandwidth(bool value);
void setCutoff(
float value);
void setQ(
float value);
void setPrewarpAtCutoff(
bool value);
void setPrewarpFreq(
float value);
void setPeakGainLin(
float value);
void setPeakGainDB(
float value);
void setBandwidth(
float value);
void setUseBandwidth(
bool value);
/*! <<<...
* }
* ```
@ -423,9 +923,9 @@ public:
* change at any time in future versions. Please, do not use it directly. */
private:
bw_peak_coeffs coeffs;
bw_peak_state states[N_CHANNELS];
bw_peak_state *BW_RESTRICT statesP[N_CHANNELS];
bw_peak_coeffs coeffs;
bw_peak_state states[N_CHANNELS];
bw_peak_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
@ -436,60 +936,107 @@ inline Peak<N_CHANNELS>::Peak() {
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setSampleRate(float sampleRate) {
inline void Peak<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_peak_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::reset(float x_0) {
inline void Peak<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT y0) {
bw_peak_reset_coeffs(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
bw_peak_reset_state(&coeffs, states + i, x_0);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
y0[i] = bw_peak_reset_state(&coeffs, states + i, x0);
else
for (size_t i = 0; i < N_CHANNELS; i++)
bw_peak_reset_state(&coeffs, states + i, x0);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : y0);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::reset(
const float * x0,
float * y0) {
bw_peak_reset_coeffs(&coeffs);
bw_peak_reset_state_multi(&coeffs, statesP, x0, y0, N_CHANNELS);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::process(
const float * const *x,
float * const *y,
size_t nSamples) {
const float * const * x,
float * const * y,
size_t nSamples) {
bw_peak_process_multi(&coeffs, statesP, x, y, N_CHANNELS, nSamples);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
std::array<float *, N_CHANNELS> y,
size_t nSamples) {
process(x.data(), y.data(), nSamples);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setCutoff(float value) {
inline void Peak<N_CHANNELS>::setCutoff(
float value) {
bw_peak_set_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setQ(float value) {
inline void Peak<N_CHANNELS>::setQ(
float value) {
bw_peak_set_Q(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setPeakGainLin(float value) {
inline void Peak<N_CHANNELS>::setPrewarpAtCutoff(
bool value) {
bw_peak_set_prewarp_at_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setPrewarpFreq(
float value) {
bw_peak_set_prewarp_freq(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setPeakGainLin(
float value) {
bw_peak_set_peak_gain_lin(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setPeakGainDB(float value) {
inline void Peak<N_CHANNELS>::setPeakGainDB(
float value) {
bw_peak_set_peak_gain_dB(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setBandwidth(float value) {
inline void Peak<N_CHANNELS>::setBandwidth(
float value) {
bw_peak_set_bandwidth(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void Peak<N_CHANNELS>::setUseBandwidth(bool value) {
inline void Peak<N_CHANNELS>::setUseBandwidth(
bool value) {
bw_peak_set_use_bandwidth(&coeffs, value);
}