fix, finalize bw_svf + examples + more restrict + better debug

This commit is contained in:
Stefano D'Angelo 2023-09-03 20:22:52 +02:00
parent 72ba53385c
commit a7b3f5ce16
13 changed files with 802 additions and 203 deletions

5
TODO
View File

@ -31,7 +31,8 @@ finally:
* check all examples again
* clearly specify that state is tied to a particular set of coeffs (1:N)
* state that sample rate is finite and > 0
* state that audio cannot be inf
* state that audio cannot be inf (also in reset)
* state that you need different output buffers to reset
* thank scientific paper authors
build system:
@ -74,6 +75,8 @@ code:
* gain compensation in distortions?
* sr-dependent vs cr-dependent coeffs? see synth poly example and pan case
* modulation vs process (multi) no update (post 1.0.0)???
* reset_state_multi allow NULL input?
* process allow NULL output?
build system:
* make makefiles handle paths with spaces etc

View File

@ -30,7 +30,8 @@ void bw_example_fx_svf_set_sample_rate(bw_example_fx_svf *instance, float sample
void bw_example_fx_svf_reset(bw_example_fx_svf *instance) {
bw_svf_reset_coeffs(&instance->svf_coeffs);
bw_svf_reset_state(&instance->svf_coeffs, &instance->svf_state, 0.f);
float v_lp, v_bp, v_hp;
bw_svf_reset_state(&instance->svf_coeffs, &instance->svf_state, 0.f, &v_lp, &v_bp, &v_hp);
}
void bw_example_fx_svf_process(bw_example_fx_svf *instance, const float** x, float** y, int n_samples) {

View File

@ -4,3 +4,6 @@ NAME := bw_example_fx_svf
SOURCES = ${SOURCES_COMMON} ${ROOT_DIR}/../src/bw_example_fx_svf.c
include ${ROOT_DIR}/../../common/vst3/vst3.mk
CXXFLAGS += -DRELEASE=1 -DNDEBUG -DBW_NO_DEBUG
#CXXFLAGS += -DDEVELOPMENT=1 -DBW_DEBUG_DEEP

View File

@ -4,3 +4,6 @@ NAME := bw_example_fxpp_svf
SOURCES = ${SOURCES_COMMON} ${ROOT_DIR}/../src/bw_example_fxpp_svf.cpp
include ${ROOT_DIR}/../../common/vst3/vst3.mk
CXXFLAGS += -DRELEASE=1 -DNDEBUG -DBW_NO_DEBUG
#CXXFLAGS += -DDEVELOPMENT=1 -DBW_DEBUG_DEEP

View File

@ -603,20 +603,20 @@ public:
float sampleRate);
void reset(
float x0 = 0.f,
float * y0 = nullptr);
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> & y0);
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0);
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
@ -667,8 +667,8 @@ inline void AP1<N_CHANNELS>::setSampleRate(
template<size_t N_CHANNELS>
inline void AP1<N_CHANNELS>::reset(
float x0,
float * y0) {
float x0,
float * BW_RESTRICT y0) {
bw_ap1_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
@ -680,9 +680,9 @@ inline void AP1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void AP1<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0, y0.data());
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
@ -695,9 +695,9 @@ inline void AP1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void AP1<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0.data(), y0.data());
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>

View File

@ -597,20 +597,20 @@ public:
float sampleRate);
void reset(
float x0 = 0.f,
float * y0 = nullptr);
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> & y0);
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0);
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
@ -661,8 +661,8 @@ inline void HP1<N_CHANNELS>::setSampleRate(
template<size_t N_CHANNELS>
inline void HP1<N_CHANNELS>::reset(
float x0,
float * y0) {
float x0,
float * BW_RESTRICT y0) {
bw_hp1_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
@ -674,9 +674,9 @@ inline void HP1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void HP1<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0, y0.data());
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : y0);
}
template<size_t N_CHANNELS>
@ -689,9 +689,9 @@ inline void HP1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void HP1<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0.data(), y0.data());
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>

View File

@ -717,20 +717,20 @@ public:
float sampleRate);
void reset(
float x0 = 0.f,
float * y0 = nullptr);
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> & y0);
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0);
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
@ -787,8 +787,8 @@ inline void HS1<N_CHANNELS>::setSampleRate(
template<size_t N_CHANNELS>
inline void HS1<N_CHANNELS>::reset(
float x0,
float * y0) {
float x0,
float * BW_RESTRICT y0) {
bw_hs1_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
@ -800,9 +800,9 @@ inline void HS1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void HS1<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0, y0.data());
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : y0);
}
template<size_t N_CHANNELS>
@ -815,9 +815,9 @@ inline void HS1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void HS1<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0.data(), y0.data());
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>

View File

@ -617,6 +617,9 @@ static inline char bw_lp1_coeffs_is_valid(
if (coeffs->prewarp_freq < 1e-6f || coeffs->prewarp_freq > 1e6f)
return 0;
if (!bw_one_pole_coeffs_is_valid(&coeffs->smooth_coeffs))
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_lp1_coeffs_state_set_sample_rate) {
if (!bw_is_finite(coeffs->t_k) || coeffs->t_k <= 0.f)
@ -628,9 +631,14 @@ static inline char bw_lp1_coeffs_is_valid(
return 0;
if (!bw_is_finite(coeffs->y_X) || coeffs->y_X <= 0.f)
return 0;
if (!bw_is_finite(coeffs->X_x) || coeffs->X_x < 0.f)
if (!bw_is_finite(coeffs->X_x) || coeffs->X_x <= 0.f)
return 0;
if (!bw_is_finite(coeffs->X_X_z1) || coeffs->X_X_z1 < 0.f)
if (!bw_is_finite(coeffs->X_X_z1) || coeffs->X_X_z1 <= 0.f)
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_cutoff_state))
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_prewarp_freq_state))
return 0;
}
#endif
@ -677,20 +685,20 @@ public:
float sampleRate);
void reset(
float x0 = 0.f,
float * y0 = nullptr);
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> & y0);
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0);
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
@ -741,8 +749,8 @@ inline void LP1<N_CHANNELS>::setSampleRate(
template<size_t N_CHANNELS>
inline void LP1<N_CHANNELS>::reset(
float x0,
float * y0) {
float x0,
float * BW_RESTRICT y0) {
bw_lp1_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
@ -754,9 +762,9 @@ inline void LP1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void LP1<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0, y0.data());
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
@ -769,9 +777,9 @@ inline void LP1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void LP1<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0.data(), y0.data());
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>

View File

@ -711,20 +711,20 @@ public:
float sampleRate);
void reset(
float x0 = 0.f,
float * y0 = nullptr);
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> & y0);
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0);
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
@ -781,8 +781,8 @@ inline void LS1<N_CHANNELS>::setSampleRate(
template<size_t N_CHANNELS>
inline void LS1<N_CHANNELS>::reset(
float x0,
float * y0) {
float x0,
float * BW_RESTRICT y0) {
bw_ls1_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
@ -794,9 +794,9 @@ inline void LS1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void LS1<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0, y0.data());
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
@ -809,9 +809,9 @@ inline void LS1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void LS1<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0.data(), y0.data());
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>

View File

@ -668,20 +668,20 @@ public:
float sampleRate);
void reset(
float x0 = 0.f,
float * y0 = nullptr);
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> & y0);
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0);
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
@ -738,8 +738,8 @@ inline void MM1<N_CHANNELS>::setSampleRate(
template<size_t N_CHANNELS>
inline void MM1<N_CHANNELS>::reset(
float x0,
float * y0) {
float x0,
float * BW_RESTRICT y0) {
bw_mm1_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
@ -751,9 +751,9 @@ inline void MM1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void MM1<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0, y0.data());
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
@ -766,9 +766,9 @@ inline void MM1<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void MM1<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0.data(), y0.data());
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>

View File

@ -1213,20 +1213,20 @@ public:
float sampleRate);
void reset(
float x0 = 0.f,
float * y0 = nullptr);
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS>& y0);
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS>& y0);
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
@ -1295,8 +1295,8 @@ inline void OnePole<N_CHANNELS>::setSampleRate(
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::reset(
float x0,
float * y0) {
float x0,
float * BW_RESTRICT y0) {
bw_one_pole_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
@ -1308,9 +1308,9 @@ inline void OnePole<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS>& y0) {
reset(x0, y0.data());
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
@ -1323,9 +1323,9 @@ inline void OnePole<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void OnePole<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS>& y0) {
reset(x0.data(), y0.data());
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>

View File

@ -858,20 +858,20 @@ public:
float sampleRate);
void reset(
float x0 = 0.f,
float * y0 = nullptr);
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> & y0);
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
void reset(
const float * x0,
float * y0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0);
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
void process(
const float * const * x,
@ -925,8 +925,8 @@ inline void SlewLim<N_CHANNELS>::setSampleRate(
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::reset(
float x0,
float * y0) {
float x0,
float * BW_RESTRICT y0) {
bw_slew_lim_reset_coeffs(&coeffs);
if (y0 != nullptr)
for (size_t i = 0; i < N_CHANNELS; i++)
@ -938,9 +938,9 @@ inline void SlewLim<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0, y0.data());
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0, y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>
@ -953,9 +953,9 @@ inline void SlewLim<N_CHANNELS>::reset(
template<size_t N_CHANNELS>
inline void SlewLim<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> & y0) {
reset(x0.data(), y0.data());
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0) {
reset(x0.data(), y0 != nullptr ? y0->data() : nullptr);
}
template<size_t N_CHANNELS>

View File

@ -37,6 +37,12 @@
* <ul>
* <li>Version <strong>1.0.0</strong>:
* <ul>
* <li>Added <code>bw_svf_reset_state_multi()</code> and updated C++
* API in this regard.</li>
* <li>Now <code>bw_svf_reset_state()</code> returns the initial output
* value.</li>
* <li>Now using relative sticky threshold for smoothing all
* "continuous" parameters.</li>
* <li><code>bw_svf_process()</code> and
* <code>bw_svf_process_multi()</code> now use <code>size_t</code>
* to count samples and channels.</li>
@ -46,6 +52,9 @@
* <li>Added overladed C++ <code>process()</code> function taking
* C-style arrays as arguments.</li>
* <li>Removed usage of reserved identifiers.</li>
* <li>Fixed theoretical bug in <code>bw_svf_init()</code>.</li>
* <li>Clearly specified parameter validity ranges.</li>
* <li>Added debugging code.</li>
* </ul>
* </li>
* <li>Version <strong>0.6.0</strong>:
@ -117,44 +126,84 @@ typedef struct bw_svf_state bw_svf_state;
*
* #### bw_svf_init()
* ```>>> */
static inline void bw_svf_init(bw_svf_coeffs *BW_RESTRICT coeffs);
static inline void bw_svf_init(
bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Initializes input parameter values in `coeffs`.
*
* #### bw_svf_set_sample_rate()
* ```>>> */
static inline void bw_svf_set_sample_rate(bw_svf_coeffs *BW_RESTRICT coeffs, float sample_rate);
static inline void bw_svf_set_sample_rate(
bw_svf_coeffs * BW_RESTRICT coeffs,
float sample_rate);
/*! <<<```
* Sets the `sample_rate` (Hz) value in `coeffs`.
*
* #### bw_svf_reset_coeffs()
* ```>>> */
static inline void bw_svf_reset_coeffs(bw_svf_coeffs *BW_RESTRICT coeffs);
static inline void bw_svf_reset_coeffs(
bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Resets coefficients in `coeffs` to assume their target values.
*
* #### bw_svf_reset_state()
* ```>>> */
static inline void bw_svf_reset_state(const bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_state *BW_RESTRICT state, float x_0);
static inline void bw_svf_reset_state(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
float x_0,
float * BW_RESTRICT y_lp_0,
float * BW_RESTRICT y_bp_0,
float * BW_RESTRICT y_hp_0);
/*! <<<```
* Resets the given `state` to its initial values using the given `coeffs`
* and the quiescent/initial input value `x_0`.
*
* The corresponding quiescent/initial lowpass, bandpass, and highpass output
* values are put into `y_lp_0`, `y_bp_0`, and `y_hp_0` respectively.
*
* #### bw_svf_reset_state_multi()
* ```>>> */
static inline void bw_svf_reset_state_multi(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_lp_0,
float * y_bp_0,
float * y_hp_0,
size_t n_channels);
/*! <<<```
* Resets each of the `n_channels` `state`s to its initial values using the
* given `coeffs` and the corresponding quiescent/initial input value in the
* `x_0` array.
*
* The corresponding quiescent/initial lowpass, bandpass, and highpass output
* values are put into `y_lp_0`, `y_bp_0`, and `y_hp_0` respectively, if they
* are not `NULL`.
*
* #### bw_svf_update_coeffs_ctrl()
* ```>>> */
static inline void bw_svf_update_coeffs_ctrl(bw_svf_coeffs *BW_RESTRICT coeffs);
static inline void bw_svf_update_coeffs_ctrl(
bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers control-rate update of coefficients in `coeffs`.
*
* #### bw_svf_update_coeffs_audio()
* ```>>> */
static inline void bw_svf_update_coeffs_audio(bw_svf_coeffs *BW_RESTRICT coeffs);
static inline void bw_svf_update_coeffs_audio(
bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Triggers audio-rate update of coefficients in `coeffs`.
*
* #### bw_svf_process1()
* ```>>> */
static inline void bw_svf_process1(const bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_state *BW_RESTRICT state, float x, float *BW_RESTRICT y_lp, float *BW_RESTRICT y_bp, float *BW_RESTRICT y_hp);
static inline void bw_svf_process1(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
float x,
float * BW_RESTRICT y_lp,
float * BW_RESTRICT y_bp,
float * BW_RESTRICT y_hp);
/*! <<<```
* Processes one input sample `x` using `coeffs`, while using and updating
* `state`. The lowpass, bandpass, and highpass output samples are put into
@ -162,7 +211,14 @@ static inline void bw_svf_process1(const bw_svf_coeffs *BW_RESTRICT coeffs, bw_s
*
* #### bw_svf_process()
* ```>>> */
static inline void bw_svf_process(bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_state *BW_RESTRICT state, const float *x, float *y_lp, float *y_bp, float *y_hp, size_t n_samples);
static inline void bw_svf_process(
bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
const float * x,
float * y_lp,
float * y_bp,
float * y_hp,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the input buffer `x` and fills the
* first `n_samples` of the output buffers `y_lp` (lowpass), `y_bp`
@ -171,7 +227,15 @@ static inline void bw_svf_process(bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_stat
*
* #### bw_svf_process_multi()
* ```>>> */
static inline void bw_svf_process_multi(bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_state *BW_RESTRICT const *BW_RESTRICT state, const float * const *x, float * const *y_lp, float * const *y_bp, float * const *y_hp, size_t n_channels, size_t n_samples);
static inline void bw_svf_process_multi(
bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y_lp,
float * const * y_bp,
float * const * y_hp,
size_t n_channels,
size_t n_samples);
/*! <<<```
* Processes the first `n_samples` of the `n_channels` input buffers `x` and
* fills the first `n_samples` of the `n_channels` output buffers `y_lp`
@ -183,18 +247,21 @@ static inline void bw_svf_process_multi(bw_svf_coeffs *BW_RESTRICT coeffs, bw_sv
*
* #### bw_svf_set_cutoff()
* ```>>> */
static inline void bw_svf_set_cutoff(bw_svf_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_svf_set_cutoff(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the cutoff frequency to the given `value` (Hz) in `coeffs`.
*
* `value` must be positive and smaller than the Nyquist frequency (half the
* sample rate).
* Valid range: [`1e-6f`, `1e6f`].
*
* Default value: `1e3f`.
*
* #### bw_svf_set_Q()
* ```>>> */
static inline void bw_svf_set_Q(bw_svf_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_svf_set_Q(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the quality factor to the given `value` in `coeffs`.
*
@ -204,7 +271,9 @@ static inline void bw_svf_set_Q(bw_svf_coeffs *BW_RESTRICT coeffs, float value);
*
* #### bw_svf_set_prewarp_at_cutoff()
* ```>>> */
static inline void bw_svf_set_prewarp_at_cutoff(bw_svf_coeffs *BW_RESTRICT coeffs, char value);
static inline void bw_svf_set_prewarp_at_cutoff(
bw_svf_coeffs * BW_RESTRICT coeffs,
char value);
/*! <<<```
* Sets whether bilinear transform prewarping frequency should match the
* cutoff frequency (non-`0`) or not (`0`).
@ -213,13 +282,46 @@ static inline void bw_svf_set_prewarp_at_cutoff(bw_svf_coeffs *BW_RESTRICT coeff
*
* #### bw_svf_set_prewarp_freq()
* ```>>> */
static inline void bw_svf_set_prewarp_freq(bw_svf_coeffs *BW_RESTRICT coeffs, float value);
static inline void bw_svf_set_prewarp_freq(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value);
/*! <<<```
* Sets the prewarping frequency `value` (Hz) in `coeffs`.
*
* Only used when the prewarp\_at\_cutoff parameter is off.
* Only used when the prewarp\_at\_cutoff parameter is off and however
* internally limited to avoid instability.
*
* Valid range: [`1e-6f`, `1e6f`].
*
* Default value: `1e3f`.
*
* #### bw_svf_coeffs_is_valid()
* ```>>> */
static inline char bw_svf_coeffs_is_valid(
const bw_svf_coeffs * BW_RESTRICT coeffs);
/*! <<<```
* Tries to determine whether `coeffs` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* `coeffs` must at least point to a readable memory block of size greater
* than or equal to that of `bw_svf_coeffs`.
*
* #### bw_svf_state_is_valid()
* ```>>> */
static inline char bw_svf_state_is_valid(
const bw_svf_coeffs * BW_RESTRICT coeffs,
const bw_svf_state * BW_RESTRICT state);
/*! <<<```
* Tries to determine whether `state` is valid and returns non-`0` if it
* seems to be the case and `0` if it is certainly not. False positives are
* possible, false negatives are not.
*
* If `coeffs` is not `NULL` extra cross-checks might be performed (`state`
* is supposed to be associated to `coeffs`).
*
* `state` must at least point to a readable memory block of size greater
* than or equal to that of `bw_svf_state`.
* }}} */
#ifdef __cplusplus
@ -238,54 +340,101 @@ static inline void bw_svf_set_prewarp_freq(bw_svf_coeffs *BW_RESTRICT coeffs, fl
extern "C" {
#endif
#ifdef BW_DEBUG_DEEP
enum bw_svf_coeffs_state {
bw_svf_coeffs_state_invalid,
bw_svf_coeffs_state_init,
bw_svf_coeffs_state_set_sample_rate,
bw_svf_coeffs_state_reset_coeffs
};
#endif
struct bw_svf_coeffs {
#ifdef BW_DEBUG_DEEP
uint32_t hash;
enum bw_svf_coeffs_state state;
uint32_t reset_id;
#endif
// Sub-components
bw_one_pole_coeffs smooth_coeffs;
bw_one_pole_state smooth_cutoff_state;
bw_one_pole_state smooth_Q_state;
bw_one_pole_state smooth_prewarp_freq_state;
bw_one_pole_coeffs smooth_coeffs;
bw_one_pole_state smooth_cutoff_state;
bw_one_pole_state smooth_Q_state;
bw_one_pole_state smooth_prewarp_freq_state;
// Coefficients
float t_k;
float t_k;
float prewarp_k;
float t;
float kf;
float kbl;
float k;
float hp_hb;
float hp_x;
float t;
float kf;
float kbl;
float k;
float hp_hb;
float hp_x;
// Parameters
float cutoff;
float Q;
float prewarp_freq;
float cutoff;
float Q;
float prewarp_k;
float prewarp_freq;
};
struct bw_svf_state {
float hp_z1;
float lp_z1;
float bp_z1;
float cutoff_z1;
#ifdef BW_DEBUG_DEEP
uint32_t hash;
uint32_t coeffs_reset_id;
#endif
float hp_z1;
float lp_z1;
float bp_z1;
float cutoff_z1;
};
static inline void bw_svf_init(bw_svf_coeffs *BW_RESTRICT coeffs) {
static inline void bw_svf_init(
bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
bw_one_pole_init(&coeffs->smooth_coeffs);
bw_one_pole_set_tau(&coeffs->smooth_coeffs, 0.005f);
bw_one_pole_set_sticky_thresh(&coeffs->smooth_coeffs, 1e-3f);
bw_one_pole_set_sticky_mode(&coeffs->smooth_coeffs, bw_one_pole_sticky_mode_rel);
coeffs->cutoff = 1e3f;
coeffs->Q = 0.5f;
coeffs->prewarp_freq = 1e3f;
coeffs->prewarp_k = 1.f;
#ifdef BW_DEBUG_DEEP
coeffs->hash = bw_hash_sdbm("bw_svf_coeffs");
coeffs->state = bw_svf_coeffs_state_init;
coeffs->reset_id = coeffs->hash + 1;
#endif
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_svf_coeffs_state_init);
}
static inline void bw_svf_set_sample_rate(bw_svf_coeffs *BW_RESTRICT coeffs, float sample_rate) {
static inline void bw_svf_set_sample_rate(
bw_svf_coeffs * BW_RESTRICT coeffs,
float sample_rate) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
BW_ASSERT(bw_is_finite(sample_rate) && sample_rate > 0.f);
bw_one_pole_set_sample_rate(&coeffs->smooth_coeffs, sample_rate);
bw_one_pole_reset_coeffs(&coeffs->smooth_coeffs);
coeffs->t_k = 3.141592653589793f / sample_rate;
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_svf_coeffs_state_set_sample_rate;
#endif
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_svf_coeffs_state_set_sample_rate);
}
static inline void bw_svf_do_update_coeffs(bw_svf_coeffs *BW_RESTRICT coeffs, char force) {
static inline void bw_svf_do_update_coeffs(
bw_svf_coeffs * BW_RESTRICT coeffs,
char force) {
const float prewarp_freq = coeffs->prewarp_freq + coeffs->prewarp_k * (coeffs->cutoff - coeffs->prewarp_freq);
float cutoff_cur = bw_one_pole_get_y_z1(&coeffs->smooth_cutoff_state);
float prewarp_freq_cur = bw_one_pole_get_y_z1(&coeffs->smooth_prewarp_freq_state);
@ -305,7 +454,7 @@ static inline void bw_svf_do_update_coeffs(bw_svf_coeffs *BW_RESTRICT coeffs, ch
coeffs->kbl = coeffs->kf * cutoff_cur;
}
if (Q_changed) {
Q_cur = bw_one_pole_process1_sticky_abs(&coeffs->smooth_coeffs, &coeffs->smooth_Q_state, coeffs->Q);
Q_cur = bw_one_pole_process1_sticky_rel(&coeffs->smooth_coeffs, &coeffs->smooth_Q_state, coeffs->Q);
coeffs->k = bw_rcpf(Q_cur);
}
coeffs->hp_hb = coeffs->k + coeffs->kbl;
@ -313,29 +462,172 @@ static inline void bw_svf_do_update_coeffs(bw_svf_coeffs *BW_RESTRICT coeffs, ch
}
}
static inline void bw_svf_reset_coeffs(bw_svf_coeffs *BW_RESTRICT coeffs) {
static inline void bw_svf_reset_coeffs(
bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_set_sample_rate);
bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_cutoff_state, coeffs->cutoff);
bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_Q_state, coeffs->Q);
bw_one_pole_reset_state(&coeffs->smooth_coeffs, &coeffs->smooth_prewarp_freq_state, coeffs->prewarp_freq + coeffs->prewarp_k * (coeffs->cutoff - coeffs->prewarp_freq));
bw_svf_do_update_coeffs(coeffs, 1);
#ifdef BW_DEBUG_DEEP
coeffs->state = bw_svf_coeffs_state_reset_coeffs;
coeffs->reset_id++;
#endif
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state == bw_svf_coeffs_state_reset_coeffs);
}
static inline void bw_svf_reset_state(const bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_state *BW_RESTRICT state, float x_0) {
static inline void bw_svf_reset_state(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
float x_0,
float * BW_RESTRICT y_lp_0,
float * BW_RESTRICT y_bp_0,
float * BW_RESTRICT y_hp_0) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(bw_is_finite(x_0));
BW_ASSERT(y_lp_0 != NULL);
BW_ASSERT(y_bp_0 != NULL);
BW_ASSERT(y_hp_0 != NULL);
state->hp_z1 = 0.f;
state->lp_z1 = x_0;
state->bp_z1 = 0.f;
state->cutoff_z1 = coeffs->cutoff;
*y_lp_0 = x_0;
*y_bp_0 = 0.f;
*y_hp_0 = 0.f;
#ifdef BW_DEBUG_DEEP
state->hash = bw_hash_sdbm("bw_svf_state");
state->coeffs_reset_id = coeffs->reset_id;
#endif
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(*y_lp_0));
BW_ASSERT(bw_is_finite(*y_bp_0));
BW_ASSERT(bw_is_finite(*y_hp_0));
}
static inline void bw_svf_update_coeffs_ctrl(bw_svf_coeffs *BW_RESTRICT coeffs) {
static inline void bw_svf_reset_state_multi(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_lp_0,
float * y_bp_0,
float * y_hp_0,
size_t n_channels) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(x_0 != NULL);
if (y_lp_0 != NULL) {
if (y_bp_0 != NULL) {
if (y_hp_0 != NULL) {
for (size_t i = 0; i < n_channels; i++)
bw_svf_reset_state(coeffs, state[i], x_0[i], y_lp_0 + i, y_bp_0 + i, y_hp_0 + i);
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_hp;
bw_svf_reset_state(coeffs, state[i], x_0[i], y_lp_0 + i, y_bp_0 + i, &v_hp);
}
}
} else {
if (y_hp_0 != NULL) {
for (size_t i = 0; i < n_channels; i++) {
float v_bp;
bw_svf_reset_state(coeffs, state[i], x_0[i], y_lp_0 + i, &v_bp, y_hp_0 + i);
}
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_bp, v_hp;
bw_svf_reset_state(coeffs, state[i], x_0[i], y_lp_0 + i, &v_bp, &v_hp);
}
}
}
} else {
if (y_bp_0 != NULL) {
if (y_hp_0 != NULL) {
for (size_t i = 0; i < n_channels; i++) {
float v_lp;
bw_svf_reset_state(coeffs, state[i], x_0[i], &v_lp, y_bp_0 + i, y_hp_0 + i);
}
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_lp, v_hp;
bw_svf_reset_state(coeffs, state[i], x_0[i], &v_lp, y_bp_0 + i, &v_hp);
}
}
} else {
if (y_hp_0 != NULL) {
for (size_t i = 0; i < n_channels; i++) {
float v_lp, v_bp;
bw_svf_reset_state(coeffs, state[i], x_0[i], &v_lp, &v_bp, y_hp_0 + i);
}
} else {
for (size_t i = 0; i < n_channels; i++) {
float v_lp, v_bp, v_hp;
bw_svf_reset_state(coeffs, state[i], x_0[i], &v_lp, &v_bp, &v_hp);
}
}
}
}
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(y_lp_0 != NULL ? bw_has_only_finite(y_lp_0, n_channels) : 1);
BW_ASSERT_DEEP(y_bp_0 != NULL ? bw_has_only_finite(y_bp_0, n_channels) : 1);
BW_ASSERT_DEEP(y_hp_0 != NULL ? bw_has_only_finite(y_hp_0, n_channels) : 1);
}
static inline void bw_svf_update_coeffs_ctrl(
bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
(void)coeffs;
}
static inline void bw_svf_update_coeffs_audio(bw_svf_coeffs *BW_RESTRICT coeffs) {
static inline void bw_svf_update_coeffs_audio(
bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
bw_svf_do_update_coeffs(coeffs, 0);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
}
static inline void bw_svf_process1(const bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_state *BW_RESTRICT state, float x, float *BW_RESTRICT y_lp, float *BW_RESTRICT y_bp, float *BW_RESTRICT y_hp) {
static inline void bw_svf_process1(
const bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
float x,
float * BW_RESTRICT y_lp,
float * BW_RESTRICT y_bp,
float * BW_RESTRICT y_hp) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(x));
BW_ASSERT(y_lp != NULL);
BW_ASSERT(y_bp != NULL);
BW_ASSERT(y_hp != NULL);
const float kk = coeffs->kf * state->cutoff_z1;
const float lp_xz1 = state->lp_z1 - kk * state->bp_z1;
const float bp_xz1 = state->bp_z1 - kk * state->hp_z1;
@ -346,9 +638,31 @@ static inline void bw_svf_process1(const bw_svf_coeffs *BW_RESTRICT coeffs, bw_s
state->lp_z1 = *y_lp;
state->bp_z1 = *y_bp;
state->cutoff_z1 = bw_one_pole_get_y_z1(&coeffs->smooth_cutoff_state);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT(bw_is_finite(*y_lp));
BW_ASSERT(bw_is_finite(*y_bp));
BW_ASSERT(bw_is_finite(*y_hp));
}
static inline void bw_svf_process(bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_state *BW_RESTRICT state, const float *x, float *y_lp, float *y_bp, float *y_hp, size_t n_samples) {
static inline void bw_svf_process(
bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT state,
const float * x,
float * y_lp,
float * y_bp,
float * y_hp,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT(x != NULL);
BW_ASSERT_DEEP(bw_has_only_finite(x, n_samples));
if (y_lp != NULL) {
if (y_bp != NULL) {
if (y_hp != NULL) {
@ -409,9 +723,30 @@ static inline void bw_svf_process(bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_stat
}
}
}
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT_DEEP(bw_svf_state_is_valid(coeffs, state));
BW_ASSERT_DEEP(y_lp != NULL ? bw_has_only_finite(y_lp, n_samples) : 1);
BW_ASSERT_DEEP(y_bp != NULL ? bw_has_only_finite(y_bp, n_samples) : 1);
BW_ASSERT_DEEP(y_hp != NULL ? bw_has_only_finite(y_hp, n_samples) : 1);
}
static inline void bw_svf_process_multi(bw_svf_coeffs *BW_RESTRICT coeffs, bw_svf_state *BW_RESTRICT const *BW_RESTRICT state, const float * const *x, float * const *y_lp, float * const *y_bp, float * const *y_hp, size_t n_channels, size_t n_samples) {
static inline void bw_svf_process_multi(
bw_svf_coeffs * BW_RESTRICT coeffs,
bw_svf_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y_lp,
float * const * y_bp,
float * const * y_hp,
size_t n_channels,
size_t n_samples) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
BW_ASSERT(state != NULL);
BW_ASSERT(x != NULL);
if (y_lp != NULL) {
if (y_bp != NULL) {
if (y_hp != NULL) {
@ -513,22 +848,149 @@ static inline void bw_svf_process_multi(bw_svf_coeffs *BW_RESTRICT coeffs, bw_sv
}
}
}
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_reset_coeffs);
}
static inline void bw_svf_set_cutoff(bw_svf_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_svf_set_cutoff(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e6f);
coeffs->cutoff = value;
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
}
static inline void bw_svf_set_Q(bw_svf_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_svf_set_Q(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e6f);
coeffs->Q = value;
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
}
static inline void bw_svf_set_prewarp_at_cutoff(bw_svf_coeffs *BW_RESTRICT coeffs, char value) {
static inline void bw_svf_set_prewarp_at_cutoff(
bw_svf_coeffs * BW_RESTRICT coeffs,
char value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
coeffs->prewarp_k = value ? 1.f : 0.f;
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
}
static inline void bw_svf_set_prewarp_freq(bw_svf_coeffs *BW_RESTRICT coeffs, float value) {
static inline void bw_svf_set_prewarp_freq(
bw_svf_coeffs * BW_RESTRICT coeffs,
float value) {
BW_ASSERT(coeffs != NULL);
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
BW_ASSERT(bw_is_finite(value));
BW_ASSERT(value >= 1e-6f && value <= 1e6f);
coeffs->prewarp_freq = value;
BW_ASSERT_DEEP(bw_svf_coeffs_is_valid(coeffs));
BW_ASSERT_DEEP(coeffs->state >= bw_svf_coeffs_state_init);
}
static inline char bw_svf_coeffs_is_valid(
const bw_svf_coeffs * BW_RESTRICT coeffs) {
BW_ASSERT(coeffs != NULL);
#ifdef BW_DEBUG_DEEP
if (coeffs->hash != bw_hash_sdbm("bw_svf_coeffs"))
return 0;
if (coeffs->state < bw_svf_coeffs_state_init || coeffs->state > bw_svf_coeffs_state_reset_coeffs)
return 0;
#endif
if (coeffs->cutoff < 1e-6f || coeffs->cutoff > 1e6f)
return 0;
if (coeffs->Q < 1e-6f || coeffs->Q > 1e6f)
return 0;
if (coeffs->prewarp_k != 0.f && coeffs->prewarp_k != 1.f)
return 0;
if (coeffs->prewarp_freq < 1e-6f || coeffs->prewarp_freq > 1e6f)
return 0;
if (!bw_one_pole_coeffs_is_valid(&coeffs->smooth_coeffs))
return 0;
#ifdef BW_DEBUG_DEEP
if (coeffs->state >= bw_svf_coeffs_state_set_sample_rate) {
if (!bw_is_finite(coeffs->t_k) || coeffs->t_k <= 0.f)
return 0;
}
if (coeffs->state >= bw_svf_coeffs_state_reset_coeffs) {
if (!bw_is_finite(coeffs->t) || coeffs->t <= 0.f)
return 0;
if (!bw_is_finite(coeffs->kf) || coeffs->kf <= 0.f)
return 0;
if (!bw_is_finite(coeffs->kbl) || coeffs->kbl <= 0.f)
return 0;
if (!bw_is_finite(coeffs->k) || coeffs->k <= 0.f)
return 0;
if (!bw_is_finite(coeffs->hp_hb) || coeffs->hp_hb <= 0.f)
return 0;
if (!bw_is_finite(coeffs->hp_x) || coeffs->hp_x <= 0.f || coeffs->hp_x >= 1.f)
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_cutoff_state))
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_Q_state))
return 0;
if (!bw_one_pole_state_is_valid(&coeffs->smooth_coeffs, &coeffs->smooth_prewarp_freq_state))
return 0;
}
#endif
return 1;
}
static inline char bw_svf_state_is_valid(
const bw_svf_coeffs * BW_RESTRICT coeffs,
const bw_svf_state * BW_RESTRICT state) {
BW_ASSERT(state != NULL);
#ifdef BW_DEBUG_DEEP
if (state->hash != bw_hash_sdbm("bw_svf_state"))
return 0;
if (coeffs != NULL && coeffs->reset_id != state->coeffs_reset_id)
return 0;
#endif
(void)coeffs;
if (!bw_is_finite(state->hp_z1))
return 0;
if (!bw_is_finite(state->lp_z1))
return 0;
if (!bw_is_finite(state->bp_z1))
return 0;
if (!bw_is_finite(state->cutoff_z1) || state->cutoff_z1 < 1e-6f || state->cutoff_z1 > 1e6f)
return 0;
return 1;
}
#ifdef __cplusplus
@ -548,25 +1010,58 @@ class SVF {
public:
SVF();
void setSampleRate(float sampleRate);
void reset(float x_0 = 0.f);
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT yLp0 = nullptr,
float * BW_RESTRICT yBp0 = nullptr,
float * BW_RESTRICT yHp0 = nullptr);
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT yLp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yBp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yHp0);
void reset(
const float * x0,
float * yLp0 = nullptr,
float * yBp0 = nullptr,
float * yHp0 = nullptr);
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT yLp0 = nullptr,
std::array<float, N_CHANNELS> * BW_RESTRICT yBp0 = nullptr,
std::array<float, N_CHANNELS> * BW_RESTRICT yHp0 = nullptr);
void process(
const float * const *x,
float * const *y_lp,
float * const *y_bp,
float * const *y_hp,
size_t nSamples);
const float * const * x,
float * const * yLp,
float * const * yBp,
float * const * yHp,
size_t nSamples);
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y_lp,
std::array<float *, N_CHANNELS> y_bp,
std::array<float *, N_CHANNELS> y_hp,
size_t nSamples);
std::array<float *, N_CHANNELS> yLp,
std::array<float *, N_CHANNELS> yBp,
std::array<float *, N_CHANNELS> yHp,
size_t nSamples);
void setCutoff(float value);
void setQ(float value);
void setPrewarpAtCutoff(bool value);
void setPrewarpFreq(float value);
void setCutoff(
float value);
void setQ(
float value);
void setPrewarpAtCutoff(
bool value);
void setPrewarpFreq(
float value);
/*! <<<...
* }
* ```
@ -578,9 +1073,9 @@ public:
* change at any time in future versions. Please, do not use it directly. */
private:
bw_svf_coeffs coeffs;
bw_svf_state states[N_CHANNELS];
bw_svf_state *BW_RESTRICT statesP[N_CHANNELS];
bw_svf_coeffs coeffs;
bw_svf_state states[N_CHANNELS];
bw_svf_state * BW_RESTRICT statesP[N_CHANNELS];
};
template<size_t N_CHANNELS>
@ -591,54 +1086,140 @@ inline SVF<N_CHANNELS>::SVF() {
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setSampleRate(float sampleRate) {
inline void SVF<N_CHANNELS>::setSampleRate(
float sampleRate) {
bw_svf_set_sample_rate(&coeffs, sampleRate);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::reset(float x_0) {
inline void SVF<N_CHANNELS>::reset(
float x0,
float * BW_RESTRICT yLp0,
float * BW_RESTRICT yBp0,
float * BW_RESTRICT yHp0) {
bw_svf_reset_coeffs(&coeffs);
for (size_t i = 0; i < N_CHANNELS; i++)
bw_svf_reset_state(&coeffs, states + i, x_0);
if (yLp0 != nullptr) {
if (yBp0 != nullptr) {
if (yHp0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++)
bw_svf_reset_state(&coeffs, states + i, x0, yLp0 + i, yBp0 + i, yHp0 + i);
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vHp;
bw_svf_reset_state(&coeffs, states + i, x0, yLp0 + i, yBp0 + i, &vHp);
}
}
} else {
if (yHp0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vBp;
bw_svf_reset_state(&coeffs, states + i, x0, yLp0 + i, &vBp, yHp0 + i);
}
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vBp, vHp;
bw_svf_reset_state(&coeffs, states + i, x0, yLp0 + i, &vBp, &vHp);
}
}
}
} else {
if (yBp0 != nullptr) {
if (yHp0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vLp;
bw_svf_reset_state(&coeffs, states + i, x0, &vLp, yBp0 + i, yHp0 + i);
}
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vLp, vHp;
bw_svf_reset_state(&coeffs, states + i, x0, &vLp, yBp0 + i, &vHp);
}
}
} else {
if (yHp0 != nullptr) {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vLp, vBp;
bw_svf_reset_state(&coeffs, states + i, x0, &vLp, &vBp, yHp0 + i);
}
} else {
for (size_t i = 0; i < N_CHANNELS; i++) {
float vLp, vBp, vHp;
bw_svf_reset_state(&coeffs, states + i, x0, &vLp, &vBp, &vHp);
}
}
}
}
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT yLp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yBp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yHp0) {
reset(x0, yLp0 != nullptr ? yLp0->data() : nullptr, yBp0 != nullptr ? yBp0->data() : nullptr, yHp0 != nullptr ? yHp0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::reset(
const float * x0,
float * yLp0,
float * yBp0,
float * yHp0) {
bw_svf_reset_coeffs(&coeffs);
bw_svf_reset_state_multi(&coeffs, statesP, x0, yLp0, yBp0, yHp0, N_CHANNELS);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT yLp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yBp0,
std::array<float, N_CHANNELS> * BW_RESTRICT yHp0) {
reset(x0.data(), yLp0 != nullptr ? yLp0->data() : nullptr, yBp0 != nullptr ? yBp0->data() : nullptr, yHp0 != nullptr ? yHp0->data() : nullptr);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::process(
const float * const *x,
float * const *y_lp,
float * const *y_bp,
float * const *y_hp,
size_t nSamples) {
bw_svf_process_multi(&coeffs, statesP, x, y_lp, y_bp, y_hp, N_CHANNELS, nSamples);
const float * const * x,
float * const * yLp,
float * const * yBp,
float * const * yHp,
size_t nSamples) {
bw_svf_process_multi(&coeffs, statesP, x, yLp, yBp, yHp, N_CHANNELS, nSamples);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y_lp,
std::array<float *, N_CHANNELS> y_bp,
std::array<float *, N_CHANNELS> y_hp,
size_t nSamples) {
process(x.data(), y_lp.data(), y_bp.data(), y_hp.data(), nSamples);
std::array<float *, N_CHANNELS> yLp,
std::array<float *, N_CHANNELS> yBp,
std::array<float *, N_CHANNELS> yHp,
size_t nSamples) {
process(x.data(), yLp.data(), yBp.data(), yHp.data(), nSamples);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setCutoff(float value) {
inline void SVF<N_CHANNELS>::setCutoff(
float value) {
bw_svf_set_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setQ(float value) {
inline void SVF<N_CHANNELS>::setQ(
float value) {
bw_svf_set_Q(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setPrewarpAtCutoff(bool value) {
inline void SVF<N_CHANNELS>::setPrewarpAtCutoff(
bool value) {
bw_svf_set_prewarp_at_cutoff(&coeffs, value);
}
template<size_t N_CHANNELS>
inline void SVF<N_CHANNELS>::setPrewarpFreq(float value) {
inline void SVF<N_CHANNELS>::setPrewarpFreq(
float value) {
bw_svf_set_prewarp_freq(&coeffs, value);
}